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Abstract

This document describes a new simple gradient descent optimizer which is a potential replacement or
supplement for theitk::RegularStepGradientDescentOptimizer. The optimizer requires only the
gradient of the parameters and uses a simple linear model internally. However, it follows the theoretical
basis of a trust-region algorithm and is able to achieve greater efficiency on certain image registration
cases.
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ITK provides the itk::RegularStepGradientDescentOptimizer class for simple optimization prob-
lems, such as those occuring in low dimensional image registration. This optimizer has the advantage of
extreme simplicity. However, in practice it can be somewhatdifficult to tune correctly. In this paper, a
trust-region gradient descent optimizer class is proposed. This algorithm is almost as simple, but is based on
a more principled approach. This optimizer can be shown to bemore efficient in terms of number of steps
and more reliable in finding an optimum in somewhat difficult cases.
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1 Trust-region Optimization

We are interested here in approaches for solving the unconstrained, multidimensional optimization problem

φφφopt = argmin( f (φφφ))

That is, we wish to find the set of parameters,φφφ, which minimizes the cost function,f (φφφ). We frame our
discussion in terms of minimization, but maximization can of course be achieved by simply negating the
cost function.

Trust-region optimization approaches solve this problem by creating a model of the cost function to be
optimized near the current estimate of the solution. This local model is then solved to provide a new estimate
of the solution. However, it is known that the model is only anaccurate representation of the true objective
function near the current estimate. Therefore, the next solution estimate is the best estimate generated from
the model, constrained to be within the area where the model is considered valid, known as the trust-region.

The general trust-region algorithm is therefore as shown inAlgorithm 1.

Algorithm 1 General Trust-Region Optimization algorithm [2]
1: Set start positionφφφ0; iteration countern = 0; scaling matrixSSS; step sizes
2: repeat
3: Compute one or more of the cost function and its derivatives at the current positionφφφ(n)

4: Generate a local model of the function, and a region on which the model is trusted.
5: Solve the trust-region subproblemto get the update to the parameters,∆φφφ(n).
6: Compute the cost function at the solution of the trust-region subproblem.
7: if the solution is not sufficiently improvedthen
8: Reject the step, and shrink the trust-region.
9: else if the solution is better than expectedthen

10: Accept the step, and enlarge the trust-region.
11: Set φφφ(n+1) = φφφ(n) + ∆φφφ(n) andn = n+1
12: else
13: {the solution is acceptable relative to the model}
14: Accept the step.
15: Set φφφ(n+1) = φφφ(n) + ∆φφφ(n) andn = n+1
16: end if
17: until the convergence criteria are reached

Trust region algorithms stand in contrast to line search methods, which work by choosing a descent direction
- a direction in the parameter space which reduces the value of the objective function - and then minimizing
the value of the objective function along that line using anyof a number of one-dimensional search methods.
Further theoretical discussion may be found in [2].

Trust-region methods are potentially useful for image registration problems because they tend to have fewer
cost function evaluations, and image registration problems have cost functions that are notoriously compu-
tationally costly. In fact, we can see that the existing regular step gradient descent optimizer (Algorithm2)
can be viewed a form of trust region optimizer. The model is simply a plane, normal to the gradient, and the
trust region is a circle with radius of the step size. The solution of the trust-region subproblem is always to
step along the negative gradient direction up to the edge of that circle. The trust region is shrunk when the
step fails to reduce the function, however, it can never be enlarged, nor does it ever truly reject a step.
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Algorithm 2 Regular Step Gradient Descent Optimizer [3]
1: Set start positionφφφ0; iteration countern = 0; scaling matrixSSS; step sizes
2: repeat
3: Compute the gradient at the current position∇D(φφφ(n))
4: Compute the scaled gradient,∇D∗ = SSS×∇D(φφφ(n))
5: if the scaled gradient has changed direction by more than 90 degreesthen
6: Set s= s

2 {R}educe the step size
7: end if
8: Compute the update to the parameters,∆φφφ(n)=

∇D∗

||∇D∗|| ·s
9: Set φφφ(n+1) = φφφ(n) + ∆φφφ(n) andn = n+1

10: until the convergence criteria are reached

It is proposed that following the formal trust region strategy will yield an optimizer similar
in simplicity and ease of use, but with better performance. In this paper, we propose the
itk::GradientDescentTrustRegionOptimizer, which uses the algorithm shown in Algorithm3.

Initial values for the various constants which work well in most cases have been provided, and are summa-
rized in Table1. These values were chosen based on the recommendations in [2] and seem to work well for
most applications.

Scaling is commonly applied to optimization algorithms in ITK to aid in convergence. Scaling can be viewed
as a reparameterization of the optimation problem with a newset of parameters whereφφφnew= SSSφφφold. In such
a system, the gradient with respect to the new parameters will beSSS−1∇φφφold

D(φφφold) whereD is the cost func-
tion. A gradient descent optimizer should take a unit step inthis gradient direction, in the new parameters.
Converting back to the old parameters requires an additional multiplication bySSS−1. It is important to note
that in the itk::RegularStepGradientDescentOptimizer, both of these steps are combined into one
and the gradient is simply divided by the scale factors. Thisis equivalent to a linear rescaling of the param-
eters by the square root of the scale factors. As theitk::GradientDescentTrustRegionOptimizer is
intended to be a drop in replacement for theitk::RegularStepGradientDescentOptimizer this con-
vention is kept. In the trust region case, however, the radius of the trust region must also be considered. The
trust-region radius is computed in the scaled parameter space - thus it is scaled by the square root of the
scaling factors. Further discussion of the role of the scalefactors can be found in [1, Chap. 4].

This role of the trust region radius means that for the trust region optimizer, the scales have real meaning.
That is, scaling an affine transformation by, for example, leaving the matrix parameter scales at 1, and
reducing the translation parameter scales to a very small number is not equivalent to setting the matrix
parameter scales to a large number and leaving the translation parameter scales at 1. In fact, this required
a change to the scaling in the ITK exampleMultiResImageRegistration2.cxx in order to get it to work
properly with both optimizers.

2 Testing and Results

The existing test for the scheme in ITK is appropriate for this optimizer, and has been used di-
rectly, with the addition of a test of the maximization mode.The optimizer can also be substi-
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Algorithm 3 Gradient Descent Trust Region optimization.
Set start positionφφφ0; iteration countern = 0; initial trust-region radiusR; scaling matrixMMM
Compute ∇φφφD(φφφ(0)) andD(φφφ(0))
repeat

Compute φφφ(n+1) at intersection of negative scaled gradient and trust-region boundary.
Compute Expected improvementE(i) = (φφφ(n+1) −φφφ(n)) ·∇φφφD(φφφ(n))−D(φφφ(n))
Compute ∇φφφD(φφφ(n+1)) andD(φφφ(n+1))

Compute ρ, the ratio of real to expected improvement.ρ =
(D(φφφ(n+1))−D(φφφ(n)))

E(n)

if ρ < c0 then
{This is an unexpectedly poor result, so the model is wrong. Reject the step and shrink the trust
region.}
R= γ0R

else if ρ < c1 then
{This is a poor result, but still a decrease. Accept the step and shrink the trust region.}
R= γ1R

else if ρ < c2 then
{The improvement is acceptable relative to the model, so accept the step}
n = n+1

else
{This improvement is good or excellent relative to the model.Accept the step, and expand the trust
region}
n = n+1;R= min(γ2R,Rmax

end if
until n > Nmax or |∇φφφD(φφφ(n+1))| < Gmin or R< Rmin
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Name Default Range Variable Description

UpperDecreaseRatio 0.75 > 0 c2 If the improvement ra-
tio is better than this,
increase the trust region
size.

MiddleDecreaseRatio 0.1 (0,1) c1 If the improvement ratio
is less than this, decrease
the trust region size.

LowerDecreaseRatio 0.001 < 1 c0 If the improvement ratio
is less than this, reject
the step, and decrease the
trust region size.

RejectedStepDecreaseFactor 0.5 (0,1) γ0 Shrink the trust region by
this factor when the step is
very poor.

PoorStepDecreaseFactor 0.5 (0,5) γ1 Shrink the trust region by
this factor when the step is
poor.

StepIncreaseFactor 2.0 > 1 γ1 Enlarge the trust region by
this factor when the step is
good.

MinimumStepLength 0.001 > 0 Rmin If the trust region shrinks
smaller than this, stop the
optimization.

InitialStepLength 1.0 > 0 R The starting trust region
radius.

MaximumStepLength 64.0 > 0 Rmax An upper limit on the trust
region radius.

GradientMagnitudeTolerance0.000001 > 0 Gmin If the gradient shrinks
smaller than this, stop the
optimization.

NumberOfIterations 100 > 0 Nmax Stop the optimization af-
ter this many iterations,
even if not complete.

Table 1: Parameters of the Gradient Descent Trust Region Algorithm
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Regular Step Trust Region
Example Iterations Final Value Iterations Final Value

ImageRegistration1 18 0.00745293 23 1.24136e-06
ImageRegistration3 18 0.00745293 23 1.24136e-06
ImageRegistration4 50 -0.929332 23 -0.929464
ImageRegistration5 200 555.216 (FAIL) 17 43.8326
ImageRegistration6 23 43.8218 19 43.834
ImageRegistration7 76 53.5944 48 53.6376
ImageRegistration9 158 44.0226 115 43.8151
ImageRegistration12 23 68.6133 19 68.6355
ImageRegistration13 27 -1.34363 8 -1.34364
ImageRegistration18 19 86730.4 11 85974.2 (FAIL)
ImageRegistration20 57 43.6097 48 43.6489

MultiResImageRegistration1 74/83/87 -1.28378 20/15/9 -1.29405
MultiResImageRegistration2 47/46/60 -1.28631 12/12/17 -1.3007

Table 2: Results on Image Registration Examples from the ITKBook [3].

tuted for the gradient descent optimizer in several of the image registration examples12. Exam-
plesImageRegistration{1,3--7,9,12,13,18,20} andMultiResImageRegistration{1,2} have been
modified to select between the optimizers and are included with this submission for easy comparison. It is
interesting to note that in each example, theitk::GradientDescentTrustRegionOptimizer resolves
with similar accuracy as theitk::RegularStepGradientDescentOptimizer, but with fewer steps. This
is summarized in the following table, and the actual commandlines used are contained in an appendix.

3 Discussion

Several cases stand out in the examples as particularly interesting. ImageRegistration5 is a case where the
regular step optimizer fails with the default arguments, mainly due to being unable to enlarge the step. Im-
ageRegistration13 is a case where the regular step method accepts a poor step, and then has to work its way
back to the solution. However, this policy of never moving toa less optimal solution is not always suitable.
In both cases, the trust region approach clearly shows its advantages. In contrast, ImageRegistration18 uses
the itk::GradientDifferenceImageToImageMetric, which has a noisy gradient. The trust region op-
timizer remains firmly stuck in a local optimum on this example, while the regular step approach is able to
temporarily move to a poorer value allowing it to escape to find the global optimum.

This paper has described theitk::GradientDescentTrustRegionOptimizer which is intended as an
improvement on the existingitk::RegularStepGradientDescentOptimizer. It is similar in intent, but
follows a formal trust region optimization scheme. Probably the most significant advantage of this scheme,
is that the algorithm can both increase and decrease its stepsize adaptively. On smooth functions, its tends
to outperform the regular step method, however, it may be less suitable for noisy functions.

1ImageRegistration3 is nearly an identical example to ImageRegistration1.
2The intended arguments for ImageRegistration18 were not clear so a multimodal image pair was chosen from the example data

arbitrarily.
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A Command lines used for testing

These code examples suppose that the variableITK DATA has been set with the path to the
<itkSource>/Examples/Data, that the variableITK BRAINWEB has been set with the path to the ITK
Brainweb data and that they are being executed in a unix styleshell, in the build directory.

./ImageRegistration1 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration1 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration3 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration3 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration4 rs $ITK_DATA/BrainT1SliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration4 tr $ITK_DATA/BrainT1SliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration5 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png test.png

./ImageRegistration5 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png test.png

./ImageRegistration6 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png test.png

./ImageRegistration6 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png test.png

./ImageRegistration7 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17S12.png test.png

./ImageRegistration7 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17S12.png test.png

./ImageRegistration9 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png test.png

./ImageRegistration9 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png test.png
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./ImageRegistration12 rs $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png \
$ITK_DATA/BrainProtonDensitySliceBorder20Mask.png test.png

./ImageRegistration12 tr $ITK_DATA/BrainProtonDensitySliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceR10X13Y17.png \
$ITK_DATA/BrainProtonDensitySliceBorder20Mask.png test.png

./ImageRegistration13 rs $ITK_DATA/BrainProtonDensitySlice.png \
$ITK_DATA/BrainProtonDensitySliceBorder20.png test.png

./ImageRegistration13 tr $ITK_DATA/BrainProtonDensitySlice.png \
$ITK_DATA/BrainProtonDensitySliceBorder20.png test.png

./ImageRegistration18 rs $ITK_DATA/BrainT1SliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration18 tr $ITK_DATA/BrainT1SliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./ImageRegistration20 rs $ITK_BRAINWEB/brainweb1e1a10f20.mha \
$ITK_BRAINWEB/brainweb1e1a10f20Rot10Tx15.mha test.mha

./ImageRegistration20 tr $ITK_BRAINWEB/brainweb1e1a10f20.mha \
$ITK_BRAINWEB/brainweb1e1a10f20Rot10Tx15.mha test.mha

./MultiResImageRegistration1 rs $ITK_DATA/BrainT1SliceBorder20.png
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./MultiResImageRegistration1 tr $ITK_DATA/BrainT1SliceBorder20.png
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./MultiResImageRegistration2 rs $ITK_DATA/BrainT1SliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png

./MultiResImageRegistration2 tr $ITK_DATA/BrainT1SliceBorder20.png \
$ITK_DATA/BrainProtonDensitySliceShifted13x17y.png test.png
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