Affine Transformation for Landmark Based
egistration Initializer in ITK

Release 0.00
E.Y. Regina Kim'!2, Hans J. Johnson':? and Norman K. Williams!

July 11,2011

'Biomedical Engineering Dept., University of Iowa, Iowa city
2Psychiatry, University of Iowa General Hospital, Iowa city

Abstract

This document describes an affine transformation algorithm as an additional feature for landmark based
registration in ITK www.itk.org. The algorithm is based on the paper by Spéth, H [1]. The author
derives a set of linear equations from paired landmarks and generates an affine transform from them.
The method implemented here gives more freedom in the choice of registration and/or initialization
method in ITK. The submission describes ITK implementation of the algorithm.

Distributed under Creative Commons Attribution License

Contents

1 Introduction 1
2 Implementation 2
3 Sample Results 3

1 Introduction

The work in [1] describes mathematics for calculating affine transformation from the number of paired
landmarks. For any number of dimension images, the algorithm will calculate a best affine based in the least
squares sense.

For the two sets of points P and Q given by

Di = (pliv“'apni)Taqi — (qlia "'7qni)T (l — 1,...,}’}’],)

www.itk.org
http://creativecommons.org/licenses/by/3.0/us/

The author derives equation to get two matrixs, A and ¢, to satisfy

pi = Agi+t (i=1,....m)

After some calculation and rearrangement, we get the following form of equation:

Qﬁjzgj (le,,n)

where

Qi = (Cllh "'aqniaQnJrl,i)T? where n+1,i = 1

Q:f(@-qf)

i=1

dj = (ajl,...,ajn,tj)T
T m
&= (CjtyrCinr)” with C=Y (qupji) (k=1,...n+1).

i=1

For more mathematical details, please see [1].

2 Implementation

This submission adds a functionality to the itk::LandmarkBasedTransformInitializer.
Usage is straightforward and is demonstrated with the included CMake testing routine
itk::LandmarkBasedTransformInitializerTest.cxx

We could start by including following ITK class.
#include <itkLandmarkBasedTransformInitializer.h>

The user instantiates the filter and sets the input landmarks, which is ordered pair of fixed and moving
landmarks. For the affine transformation, the user starts with instantiating of itk: :AffineTransform, and
set the transformation for the initializer.

typedef itk::Image< PixelType, 3> ImageType;
typedef itk::AffineTransform<double, 3> TransformType;
TransformType::Pointer transform = TransformType: :New();

typedef itk::LandmarkBasedTransformInitializer< TransformType,
ImageType, ImageType > TransformInitializerType;

TransformInitializerType::Pointer initializer = TransformInitializerType: :New();

TransformInitializerType::LandmarkPointContainer fixedLandmarks;
TransformInitializerType::LandmarkPointContainer movingLandmarks;

Set the paired landmarks:

Distributed under Creative Commons Attribution License

http://creativecommons.org/licenses/by/3.0/us/

double fixedLandMarkInit[6][3] =
{

-1.33671 , -279.739 , 176.001 },
28.0989 , -346.692 , 183.367 },
-1.36713 , -257.43 , 155.36 },

-33.0851 , -347.026 , 180.865 },
-0.16083 , -268.529 , 148.96 },

-0.103873, -251.31 , 122.973 }

P U

i
double movingLandmarkInit[6][3] =

{
{ -1.66705 , -30.0661 , 20.1656},
{ 28.1409 , -93.1322 , -5.34366},
{-1.55885 , -0.495696, 12.7584},
{-33.01651 , -92.0973 , -8.66965},
{-0.189769 , -7.3485 , 1.75063},
{0.1021 , 20.2155 , -12.84606}

bi

for (unsigned 1 = 0; i < 6; i++)

{

TransformInitializerType::LandmarkPointType fixedPoint, movingPoint;

for(unsigned j = 0; j < 3; J++)
{
fixedPoint [j] = fixedLandMarkInit[i][j];
movingPoint [j] = movingLandmarkInit[i][7];
}

fixedLandmarks.push_back (fixedPoint);

movingLandmarks.push_back (movingPoint) ;

}

initializer->SetFixedLandmarks (fixedLandmarks) ;
initializer->SetMovingLandmarks (movingLandmarks);

initializer->SetTransform(transform);

The computation of transformation could be start as following:

initializer->InitializeTransform();

3 Sample Results

The test result of brain landmarks is shown here. The test data set is the same data set which included in the
testing routine itk: :LandmarkBasedTransformInitializerTest.cxx. Our fixed and moving landmarks
constitutes 6 pairs. Figure 1 2 shows our landmarks in 3D view with 3D Slicer www.slicer.org. After
initialization, moving landmarks are well overlaied with transformed landmarks. Please see figure 3.

References

[1] H Spédth. Fitting affine and orthogonal transformations between two sets of points. Mathematical
Communications, 2004. (document), 1

Distributed under Creative Commons Attribution License

www.slicer.org
http://creativecommons.org/licenses/by/3.0/us/

References 4

.AC
o FC

LE
e RP o

e RE
@ VN4

Figure 1: Fixed and moving landmarks for 3D Affine transformation with 6 paired set points.

L &lE
P e RE
e RF
o VM4

] - -
Axial Mone Sagittal Mone Coronal None
) MNone maving...e.nii MNone maving...e.nii [l MNone maving...e.nii
(@[] R [55957 [@I[3]+] R [0.07467 [&][2][=] R [93.368

Figure 2: Fixed and moving landmarks for 3D Affine transformation with 6 paired set points where brain
MR image overlaid.

Distributed under Creative Commons Attribution License

http://creativecommons.org/licenses/by/3.0/us/

References S

120000.000000
SSE between paried landmarks

100000.000000

80000.000000
<
3
&
°
4
5
g_ 60000.000000
"
b
o
£
3
"

40000.000000

20000.000000

0000000 —————=="—""""7"""°="== o
LA LB LC LD LF LG
==SSE before transform 86621.323961 103082.414966 86327.881368 100912.030675 89885.853034 92176.363134
= = SSE after Trasform 0.000268 3167.686044 0.000589 0.000004 0.000137 0.000040

Figure 3: Fixed and moving landmarks for 3D Affine transformation with 6 paired set points. Sum of
squared error(SSE) were calculated to see how well the algorithm performes for the case. Graph shows that
the SSE is very small after transformation (red dotted line) than before the transformation (solid blud line),
and actual numbers for each plot are shown right below the graph

Distributed under Creative Commons Attribution License

http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Implementation
	Sample Results

