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Abstract

This document describes an extension of the Insight Toolkit (ITK, www.itk.org) for 2D-3D reg-
istration with multiple fixed images, that is, registration of a three-dimensional dataset to a group of
fixed planar projections. 2D-3D registration is possible with ITK’s standard classes but with several
limitations: the number of fixed images is restricted to one and the moving image’s orientation axes are
ignored, which greatly complicates the registration definition. Both problems are solved by the proposed
framework, which permits multi-resolution intensity-based registration with an arbitrary number of fixed
images, with all images defined in any orientation. In addition, the framework provides implementations
of the Normalized Gradient Correlation and Pattern Intensity metrics, which are commonly used in 2D-
3D registration but were not present in ITK. This article gives a detailed description of the proposed
framework, along with examples that show its capabilities in registrations of real and simulated images
of the spine.
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1 Introduction

Registration techniques of pre-operative and intra-operative images are prerequisites for a large variety of
image guided interventions, such as radiotherapy planning, minimally invasive surgery and endoscopic pro-
cedures. Among these techniques, 2D-3D registration consists of the matching of a moving 3D dataset to
one or more fixed 2D projections. Most of the time, the 3D data comes in the form of a CT or MR scan,
while 2D images are x-rays acquired with a C-arm. A recent study by Markelj et al. [2] gives a comprehen-
sive review of the large amount of strategies developed by different research groups to solve this problem.
Roughly, 2D-3D registration algorithms can be grouped according to the type of data used –features, inten-
sity or gradients– and the dimensional correspondence used to evaluate the images’ similarity –projection,
back-projection and reconstruction– where projective intensity-based registration is the most common strat-
egy. Algorithms of this type generate Digitally Reconstructed Radiographs (DRR) projecting the 3D image
onto the x-rays’ planes. Similarities between the DRRs and x-rays are then evaluated using a metric which
compares their intensities voxel-by-voxel. The 3D image is transformed and the DRRs are regenerated un-
til the similarity metric reaches its maximum. As some spatial information is inherently lost on the DRR
generation, multiple projections acquired in different orientations are used to ensure that all directions can
be observed. Traditionally, two projections are used, which are acquired in the Antero-Posterior (AP) and
Lateral (LAT) orientations.

The Insight Toolkit (ITK, www.itk.org), a widely used open-source software library for medical image
processing, gives limited support for 2D-3D registration. Using the standard ITK classes, it is possible to
implement projective intensity-based registrations, but with considerable limitations:

• Only one fixed image can be included in the registration.

• The orientation axes of the moving image are ignored, which complicates the geometric definition of
the registration.

• Only one ray-casting algorithm is available for DRR generation, which only supports rigid transfor-
mations.

• No support for multi-threading is available.

This work proposes a set of classes based on ITK 3.20.0 which solves the first two problems listed above.
The proposed framework allows implementation of registrations which accept one, two or more fixed im-
ages and register the moving dataset to all of the fixed images simultaneously, considering the orientation
information present in the moving image. Although the proposed framework does not address the latter
two problems –non-rigid transformations and multi-threading support– the interested reader should consult
the work by Steininger et al. [5], who proposed an ITK extension which solved the aforementioned issues
(http://ibia.umit.at/ResearchGroup/Phil/web/Simple2D3DRegistrationFramework.html).
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Figure 1: Connection diagram of the proposed framework’s classes. The main differences between this frame-
work and the ITK’s current one are the use of the itk::MultiImageToImageMetric class instead of the stan-
dard metric object and the use of multiple interpolators. Also note that registration is encapsulated in the new
MultiResolutionMultiImageToImageRegistrationMethod.

This article is organised as follows: Section 2 gives a brief theoretical definition of the registration problem
followed by a detailed description of the proposed framework’s classes and interface. Section 3 describes
a number of example applications that demonstrate the framework’s capabilities in registration of real and
simulated data. Finally, conclusions and future work guidelines are presented on Section 4.

2 Framework for intensity-based registration

The 2D-3D intensity-based registration problem is defined as follows. Let M be the moving 3D image and
Fk with k = 0..N− 1 the set of N fixed 2D images. Following ITK’s convention, let T be a geometrical
transform which takes a point x from the fixed image’s physical coordinate space to the moving image’s
physical coordinate space. For each fixed image Fk a corresponding 2D image P T M

k exists, which is the
projection of the moving image onto the plane of Fk after application of transform T . In other words, P T M

k
is the k-th DRR, mathematically defined as
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P T M
k (x) =

∫ 1

0
M(T (ek +λ(x− ek)))dλ (1)

that is, the intensity value at point x of P T M
k equal the integral of the moving image M intensities sampled

along the ray that goes from x to the projection’s focal point ek, after application of transform T . The ray
equation is parametrised using the variable λ: if λ is 0 the ray is in x, if λ is 1 the ray is the focal point ek.
It is assumed that a direct integration of the voxel values of M gives a DRR useful for registration purposes,
so no intensity corrections are needed.

Let Sk be a metric which computes the similarity between Fk and P T M
k on a defined set of points xFk. The

problem of intensity-based 2D-3D registration consists of finding the optimal transform Ṫ which maximises
the sum of all similarity metrics Sk

Ṫ = argmax
T

K

∑
k=1

Sk

= argmax
T

K

∑
k=1

Sk(Fk,P T M
k ,xFk) (2)

In terms of programming, ITK provides classes for all objects involved in the registration: transform, met-
ric, optimizer and interpolator, used to sample the moving image’s values on non-grid positions. All of
these objects are plugged into a registration method class, which makes all the necessary internal con-
nections and coordinates the optimization to find the optimal transform parameters. Usually, the registra-
tion method object is an instance of itk::ImageRegistrationMethod, which expects a generic trans-
form, interpolator and a metric object subclassed from itk::SingleValuedCostFunction, as it must
return a single real value as a quality measure of the match between the fixed and moving images. For
the same reason, the used optimizer must be designed to find the optimum of single-valued cost function
and must be subclassed from itk::SingleValueNonLinearOptimizer. Multi-resolution registration is
possible by using the itk::MultiResolutionImageRegistrationMethod, which requires filters of class
itk::MultiResolutionPyramidImageFilter to generate the downsampled versions of the moving and
fixed images. For 2D-3D registration, ITK provides the itk::RayCastInterpolateImageFunction for
generation of DRR using the standard ray-casting algorithm.

Any developer familiar with ITK’s paradigm should be able to adjust to the proposed one with min-
imal effort, as the former has been largely respected. Registration objects work in almost identi-
cal way, although they are instances of the new itk::MultiImageToImageRegistrationMethod and
MultiResolutionMultiImageToImageRegistrationMethod classes. Its main difference with the stan-
dard classes is the use of multiple fixed images, pyramid filters and interpolators instead of the single ones
needed in ITK. Optimizers remain as subclasses of SingleValuedNonLinearOpitmizer, but metric ob-
jects have been replaced by the new MultiImageToImageMetric class which, like in standard ITK, return
a single real value, but accept multiple fixed images as input instead of the single one permitted by ITK’s
metrics. Concrete implementations of the Gradient Difference, Normalized Gradient Correlation and Pattern
Intensity metrics for multiple fixed images are provided, which are widely-used in 2D-3D registration. In
addition, a new ray-casting interpolator class named itk::PatchedRayCastInterpolateImageFunction
is provided, which fixes some of the bugs present in the original implementation. A schematic of the
framework’s classes is shown in Figure 1, which shows how objects are connected for a typical registration
problem.

Detailed descriptions of all classes present in the proposed framework are given in the sections below.
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2.1 Registration methods 5

2.1 Registration methods

The main class of the framework is the itk::MultiImageToImageRegistrationMethod, which co-
ordinates all objects required in the registration process, which are the images, transform, met-
ric, optimizer and interpolators. As itk::MultiImageToImageRegistrationMethod was sub-
classed from itk::ProcessObject, a call to the Update method is all that is needed to execute
the registration once its components have been plugged in. Multi-resolution registration can be
done by using the itk::MultiResolutionMultiImageToImageRegistrationMethod, a subclass of
itk::MultiImageToImageRegistrationMethod.

The moving image, transform and optimizer can be set on a MultiImageToImageRegistrationMethod
object using the standard SetMovingImage, SetTransform and SetOptimizer methods, also
present in ITK’s original registration classes. Addition of the metric requires creation of an
itk::MultiImageToImageMetric instance, which should be later plugged into the registration ob-
ject using the SetMultiMetric method. Adding the fixed images, regions, masks and interpola-
tors is different, as multiple objects need to be plugged in rather than just one. The proposed
framework offers two different ways to do this. The first and recommended way is to create
each object individually and plug them into the registration using the corresponding Add method.
The itk::MultiImageToImageRegistrationMethod has implementations of the AddFixedImage,
AddFixedImageRegion, AddFixedImageMask and AddInterpolator methods for insertion of fixed im-
ages, regions, masks and interpolators respectively. For example, the code to add two fixed images should
be as follows

typedef itk::Image<short,3> FixedImageType;
typedef itk::Image<short,3> MovingImageType;

typedef itk::MultiImageToImageRegistrationMethod<FixedImageType,
MovingImageType> RegistrationType;

const unsigned int FImgTotal = 2;

RegistrationType::Pointer registration = RegistrationType::New();

for( unsigned int f=0; f<FImgTotal; f++ )
{
FixedImageType::Pointer fixedImage;

// do something here to read or create a fixed image

registration->AddFixedImage( fixedImage );
}

The second way to define fixed images, regions and interpolators is to store them in std::vector ob-
jects and plug them into the registration using SetFixedMultiImage, SetFixedMultiImageRegion,
SetFixedMultiImageMask or SetMultiInterpolator methods respectively. The code to add a set of
fixed images should look like the written below:

RegistrationType::FixedMultiImageType fixedMultiImage;

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3264]
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2.1 Registration methods 6

for( unsigned int f=0; f<FImgTotal; f++ )
{
FixedImageType::ConstPointer fixedImage;

// do something here to read or create a fixed image

fixedMultiImage.push_back( fixedImage );
}

registration->SetFixedMultiImage( fixedMultiImage );

Usually, the elements of these types of arrays are const so care must be taken to store them
correctly. The MultiInterpolatorType has an additional problem: its elements are of type
itk::InterpolateImageFunction::Pointer so, if this type of array was created, the user should define
the interpolator, cast it to itk::InterpolateImageFunction::Pointer, store it and finally plug it into
the registration method. All these steps can be avoided if the AddInterpolator method is used instead,
which can receive a Pointer of any subclass of itk::InterpolateImageFunction and, normally, leads
to simpler code. As an example, compare the code snippet given below, which uses the AddInterpolator
method,

typedef itk::PatchedRayCastInterpolateImageFunction<MovingImageType,
double> InterpolatorType;

for( unsigned int i=0; i<FImgTotal; f++ )
{
InterpolatorType::Pointer interpolator = InterpolatorType::New();

// here, code to define the interpolator’s focal point, transform, etc.

registration->AddInterpolator( interpolator );
}

with the following one, which uses the SetMultiInterpolator method.

typedef itk::PatchedRayCastInterpolateImageFunction<MovingImageType,
double> InterpolatorType;

typedef RegistrationType::BaseInterpolatorPointer BaseInterpolatorPointer;
typedef RegistrationType::MultiInterpolatorType MultiInterpolatorType;

MultiInterpolatorType multiInterpolator;

for( unsigned int i=0; i<FImgTotal; f++ )
{
InterpolatorType::Pointer interpolator = InterpolatorType::New();

// here, code to define the interpolator’s focal point, transform, etc.

multiInterpolator.push_back( static_cast<BaseInterpolatorPointer>( interpolator ) );

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3264]
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2.2 Transform 7

}
registration->SetMultiInterpolator( multiInterpolator );

Although both snippets implement the same function –addition of multiple interpolators to the registration
method– the first one is much simpler.

The itk::MultiImageToImageRegistrationMethod class and its subclasses expect that the number of
defined regions, masks and interpolators is exactly equal to the number of fixed images. However, if no
regions have been set for the fixed images, itk::MultiImageToImageRegistrationMethod will use their
buffered regions by default. Also, if no masks are defined, they will be ignored during registration. It is also
possible to define masks for only some of the fixed images, by calling the AddFixedImageMask method
with a NULL argument for the ones that should not be masked.

The itk::MultiResolutionMultiImageToImageRegistrationMethod implements multi-resolution
registration with multiple fixed images. The class interface was kept as similar as possible to
the available itk::MultiResolutionImageRegistrationMethod, so the user must provide the fil-
ters that generate the images for each resolution level. The filter for the moving image is set
with the SetMovingImagePyramid method and the ones used for the fixed images are set with the
AddFixedImagePyramid or SetFixedMultiImagePyramid methods. The number of resolution levels can
be set using the SetNumberOfLevels method, which will define a default schedule for the different resolu-
tion levels. Finer control over the amount of blurring and downsampling is achieved with the SetSchedules
method, which receives two matrices –one for the moving image and one for the fixed ones– whose elements
define the downsampling factor applied in each dimension (column) for each resolution level (row). In 2D-
3D registration, using SetSchedules is always recommended, as the fixed images’ downsampling factor
along the slice direction must be equal to 1 at all resolution levels (in other words, all elements on the third
column of the fixed images’ schedule matrix must be equal to 1).

Finally, note in the code snippets given above that both the fixed and moving images have been defined with
the same number of dimensions, three. Despite that the fixed images are usually 2D, they must be defined as
3D images with a single slice, to ensure that ITK handles their orientation and origin information correctly.

2.2 Transform

When the itk::PatchedRayCastInterpolateImageFunction class is used for 2D-3D registra-
tion, the framework can only use rigid transforms such as itk::TranslationTransform and
itk::Euler3DTransform. Despite this limitation, the proposed classes can still be used on plenty of appli-
cations, as 2D-3D registration is commonly used on rigid body structures such as the vertebrae, skull, pelvis
and femur [2].

2.3 Metric

Equation 2 states that the degree of similarity in registrations with multiple fixed images can be calculated
as the sum of individual similarity metrics between the moving image and each of the fixed ones. To
implement this functionality, a new class named itk::MultiImageToImageMetric was written, which
internally stores an array of individual metrics and returns their sum when its value is requested by the
GetValue method.

Like the existing itk::ImageToImageMetric class, itk::MultiImageToImageMetric was derived from
itk::SingleValuedCostFunction, so it could be easily incorporated into the standard ITK’s registration
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2.3 Metric 8

framework. Hence, the standard GetValue, GetDerivatives and GetValueAndDerivatives methods are
present. Calls to GetValue return the sum of the internal array of metrics while GetDerivatives return
an estimation of the functions’ derivatives using the central differences method, with a variable step size set
with the SetDerivativeDelta method. GetDerivatives is defined as virtual, so developers can replace
it with a more efficient method, as the central differences method requires multiple calls to GetValue, which
can be slow and inaccurate for some applications.

The itk::MultiImageToImageMetric and its internal metric type itk::ImageToImageMetric are de-
fined as purely virtual and cannot be instantiated. Concrete implementations of similarity metrics are imple-
mented by the itk::MultiImageToImageMetric subclasses, which are responsible for redefinition of the
internal metric type. Currently, the proposed framework has implementations of the following metrics:

• itk::MeanSquaresMultiImageToImageMetric

• itk::GradientDifferenceMultiImageToImageMetric

• itk::NormalizedGradientCorrelationMultiImageToImageMetric

• itk::PatternIntensityMultiImageToImageMetric

Mean Squares

The itk::MeanSquaresMultiImageToImageMetric offers an implementation of the well-
known average of squared differences metric, based on the sum of multiple instances of
itk::MeanSquaresImageToImageMetric. This metric requires both images to have similar inten-
sity scales to work properly, which is very difficult to achieve in 2D-3D registration using DRRs. Thus, this
function serves more as an example of how itk::MultiImageToImageMetric must be subclassed rather
than for actual use.

Although itk::MeanSquaresMultiImageToImageMetric has an analytical formula for its gradient, it is
not used when GetDerivative is called. The itk::MeanSquaresMultiImageToImageMetric gradient
calculation assumes that valid points are only found in the overlapping regions between the fixed and moving
images which, in the case of 2D-3D registration, are non-existent. Thus, the available analytical formula
could not be used and was replaced by the finite differences method, which, despite being less efficient,
makes no assumptions about overlap and calculates a correct estimate of the function’s gradient.

Gradient Difference

The itk::GradientDifferenceMultiImageToImageMetric implements the Gradient Difference metric
proposed by Penney et al. [4] for multiple fixed images. The proposed framework also includes a version
for single fixed image registration named itk::GradientDifferenceSingleImageToImageMetric. Gra-
dient Difference estimates the degree of similarity based on the image obtained by subtraction between the
gradients of the fixed and projected images. Mathematically, it is defined as

Sk = ∑
xFk

σ2
ik

σ2
ik +GDi

k(xFk)
+∑

xFk

σ2
jk

σ2
jk +GD j

k(xFk)
(3)
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2.3 Metric 9

where GDi
k and GD j

k are the differences between the gradients of fixed image k and the ones of the mov-
ing image’s projection P T M

k along i and j, defined as the first and second directions in the fixed image’s
coordinate system.

GDi
k =

δFk

δi
−

δP T M
k
δi

(4)

GD j
k =

δFk

δ j
−

δP T M
k

δ j
(5)

Terms σ2
ik and σ2

jk are the variances from the gradient images of Fk

σ
2
ik = var(

δFk

δi
) (6)

σ
2
jk = var(

δFk

δ j
) (7)

Gradient Difference reduces the effects of low frequency intensity changes, such as the ones introduced
by soft tissue, by using the images’ gradients rather than their intensities. In addition, its reciprocal form
(differences are placed in the function’s denominator) makes it strong against thin artefacts with strong
intensities, such as surgical instruments present in the images [4].

Note that the framework includes an implementation of the Gradient Difference metric de-
spite that ITK already has one. The main reason is that the original implementation, called
itk::GradientDifferenceImageToImageMetric always pre-computes the moving image gradient. If
it was used in a metric for multiple fixed images, ITK’s implementation would compute multiple identical
versions of this gradient and waste considerable amounts of memory by storing them.

Normalized Gradient Correlation

itk::NormalizedGradientCorrelationMultiImageToImageMetric implements the
Normalized Gradient Correlation metric for multiple fixed images, based on the
itk::NormalizedGradientCorrelationImageToImageMetric class also included in the proposed
framework. This metric computes the average of the normalized cross-correlation between the gradients of
the fixed and projected images computed along directions i and j [1].

Normalized Gradient Correlation is defined as

Sk = NCC

(
∂Fk

∂i
,

P T M
k
∂i

,xFk

)
+NCC

(
∂Fk

∂ j
,

P T M
k
∂ j

,xFk

)
(8)

with NCC(F,M,x) the Normalized Cross Correlation between images F and M evaluated on points x

NCC(F,M,x) = ∑x F(x)M(x)√
∑x F(x)2

√
∑x M(x)2

(9)

Normalized Gradient Correlation, like Gradient Difference, is insensitive to low-frequency variations intro-
duced by soft tissue, as images’ gradients are used to compute the metric rather than their intensities.
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Pattern Intensity

The itk::PatternIntensityMultiImageToImageMetric implements the Pattern Intensity metric pro-
posed by Weese et al. [10] for multiple fixed images. Like the two metrics introduced in the previous
sections, its version for registrations with a single fixed image is also included in the proposed framework
under the name itk::PatternIntensityImageToImageMetric. Pattern intensity characterises the struc-
tures found on the difference image IDk, obtained after subtraction of the fixed image Fk and the projection
P T M

k . If the moving image is not registered properly, areas with large intensity variations, that is ’structures’,
will appear in the difference image IDk. In turn, structures will vanish if registration is correct, leaving areas
with low changes in intensity. The pattern intensity metric assigns values to the amount of structures found
on a small moving kernel, according to the following formula

Sk = ∑
xFk

∑
uFk

σ2

σ2 +(IDk(xFk)− IDk(uFk))2 (10)

|xFk−uFk|2 < r2 (11)

In Equation 10, term xFk represents the coordinates of each voxel taken into account for the metric calcula-
tion and uFk, the coordinates of a moving kernel of radius r centered on voxel xFk. This kernel samples the
image IDk, obtained from the subtraction of the fixed and projected images

IDk = Fk−P T M
k (12)

Also, terms r and σ2 are user-defined parameters. Parameter r defines the radius of the moving kernel.
Parameter σ2 defines the sensitivity which determines if a intensity variation should be considered a structure
or not. These parameters can be set using the SetRadius and SetSigma methods. The default value is 3
voxels for r and 10 for σ.

The Pattern Intensity metric, differs from Gradient Difference and Normalized Gradient Correlation in that
it does not compute the images’ gradients. Instead, it uses direct subtraction between intensities of the fixed
and projected images, but its moving kernel restricts the metric to the local features rather than the global
ones, preventing soft tissue intensity variations from affecting the metric values. Like Gradient Difference,
it also has a reciprocal form, which makes it strong against thin outliers like surgical instruments.

2.4 Optimizer

The proposed framework works with any optimizer derived from the
itk::SingleValuedNonLinearOptimizer class. Van der Bom et al. [9] experimented with differ-
ent combinations of metrics and optimizers for registration of a CT scan to a single x-ray of a human skull,
demonstrating that proper combinations can considerably affect the registration performance. The best
performing combination was the Normalized Gradient Correlation metric paired with a conjugate gradient
descent optimization algorithm, such as the one implemented by the itk::FRPROptimizer class. However,
it should be noted that registration problems are highly specific and the best combination of metric and
optimizer for one may not be the best for another.
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2.5 Interpolator

The proposed framework includes a new interpolator class, named
itk::PatchedRayCastInterpolateImageFunction, which projects a 3D image onto a plane us-
ing the ray casting algorithm, integrating the intensity values along rays that go from all voxels on the
imaging plane to a defined focal point, as defined in Equation 1. Ray casting offers a simplified model of
the x-ray formation process, ignoring effects such as scattering, and has become a widely used algorithm
for DRR generation.

The itk::PatchedRayCastInterpolateImageFunction is based on the existing
itk::RayCastInterpolateImageFunction, which has many limitations that have prevented its
widespread use. Most importantly, the moving image’s orientation was completely ignored, so its axes were
always assumed to be parallel to x, y and z. itk::PatchedRayCastInterpolateImageFunction solves
the aforementioned problem by offering calculations of the rays’ direction with all the images’ orientation
taken into account. The class interface was kept identical to itk::RayCastInterpolateImageFunction,
thus the input image and focal point are set using the SetInputImage and SetFocalPoint methods.

However, not all limitations of itk::RayCastInterpolateImageFunction were addressed. Among the
ones left unsolved were the lack of support for multi-threading and the bilinear scheme used for interpola-
tion, which could be extended to tri-linear. These improvements were left for future work.

3 Example applications

Source code is included with this article and can be compiled on multiple platforms using CMake 2.8.1 or
newer (http://www.cmake.org). Unit tests are provided for all the framework’s classes, which can be
executed using CMake’s testing program, CTest. Unit testing requires a set of sample images, provided in
the Data directory found within the source code’s root directory.

In addition to the unit tests, two sample applications are provided: MultiImageSearch and
MultiImageRegistration, which give an example of the framework’s capabilities. Descriptions of these
applications are given in the following sections, along with results with simulated data, that is, using DRRs
as reference images instead of actual radiographs. The MultiImageRegistration is also tested with real
images obtained from a public database.

3.1 Exhaustive search for intensity-based registration

The MultiImageSearch example is an example application that evaluates a chosen registration metric for
various translation values using the itk::ExhaustiveOptimizer. The search is repeated on three reso-
lution levels with downsampling factors of 4, 2 and 1 (1 meaning no downsampling). The results of this
application should be plotted to examine the metric’s shape around the optimum and design a suitable opti-
mization strategy.

The MultiImageSearch command line looks as follows

MultiImageSearch [m] [N] [f1] [f1Px] [f1Py] [f1Pz] ... [fN] [fNPx] [fNPy] [fNPz]
[mc] <sigma> [sx] [sy] [sz] [ds]

where m is the moving image’s file name, N the number of fixed images, f k with k = 1..N the k’th fixed
image’s file name and f kPx, f kPy and f kPz the real-world coordinates of the k’th image’s focal point.
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(a) (b)

(c) (d)

Figure 2: DRRs used as fixed images with their regions of interest (a) 0◦ LAT view (b) 30◦ (c) 60◦ (d) 90◦ AP view

Argument mc is the metric class, which can take values of gd, gc or pi for Gradient Difference, Normalized
Gradient Correlation or Pattern Intensity respectively. Parameter sigma must only be given when the Pattern
Intensity metric is chosen, and sets the σ value for Equation 10. Parameters sx, sy and sz define the search
grid for each dimension, with the total number of steps being 2× s+ 1 centred around 0.0. Parameter ds
controls the step size in millimetres.

Calling MultiImageSearch on the Data directory with the following parameters

MultiImageSearch moving.thr.mha 2 fixedAP.roi.mha 0 1000 0 fixedLAT.roi.mha -1000 0 0
gd 25 25 0 0.4

evaluates the Gradient Difference metric around the optimum transform, which is the identity, on a 51 by 51
grid with different translation values on the x and y axes. The moving image moving.thr.mha is a CT scan
of the spine lumbar section, thresholded for a more realistic generation of DRRs and located with the real-
world origin inside the L4 vertebra. Images fixedLAT.roi.mha and fixedAP.roi.mha, shown in Figure
2(a) and 2(d), are lateral (LAT) and antero-posterior (AP) simulated projections of the CT dataset, cropped
to show only vertebra L4. Focal point for the LAT projection is (−1000,0,0) and, for the AP projection,
(0,1000,0). Changing argument gd to gc or pi (setting σ to 2000 when Pattern Intensity is chosen) makes
the same experiment changing only the similarity metric. The resulting plots for all metrics on all resolution
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Figure 3: Metrics’ plots around the optimum transform for different translation values. Tested metrics are Gradient
Difference (top row), Normalized Gradient Correlation (middle row) and Pattern Intensity (bottom row). Resolution level
changes across columns with downsampling factors of 4 (left column), 2 (middle column) and 1 (right column).

levels are shown in Figure 3. Note that the optimum is well-defined on all resolution levels and that narrow
ridges are present along the x and y axes, which can slow down an optimizer’s convergence. These ridges
are effectively reduced at lower resolution levels.

Extra images can be added into the registration by modifying the command line. For example, calling
MultiImageSearch with the following arguments

MultiImageSearch moving.thr.mha 4 fixedLAT.roi.mha -1000 0 0 fixed30.roi.mha -866.0254
500 0 fixed60.roi.mha -500 866.0254 0 fixedAP.roi.mha 0 1000 0 gc 25 25 0 0.4

performs an exhaustive search of the Normalized Gradient Correlation metric, but using four fixed images
instead of two. Apart from the LAT and AP views, corresponding to 0◦ and 90◦, two extra views with angles
of 30◦ and 60◦, shown in Figure 2(b) and 2(c), were added into the metric calculation. Results shown on
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Figure 4: Normalized Gradient Correlation plots around the optimum transform using 4 fixed images. Comparison with
the metric using 2 fixed images (middle row of Figure 3) show that additional ridges appear on the normal directions of
the added images, which are effectively filtered at low resolution levels.

Figure 4 depict the metric around the optimum for the three tested resolution levels. Note that additional
ridges appear, which correspond to the normal directions of the added images.

3.2 Multi-resolution intensity-based registration

The MultiImageRegistration example performs a rigid registration of the moving image to the set of
fixed images given as input. The Normalized Gradient Correlation metric is used to evaluate the images’
similarity, which is optimised using the Fletcher-Reeves Polak-Ribiere (FRPR) Conjugate Gradient algo-
rithm. Three resolution levels are used, with downsampling factors of 4 and 2 for the first and second. The
images’ original resolutions are used in the last level.

The MultiImageRegistration is called with a command line similar to the previous example

MultiImageRegistration [m] [N] [f1] [f1Px] [f1Py] [f1Pz] ... [fN] [fNPx] [fNPy] [fNPz]
[oDir] <inT>

with the main difference being the last two arguments. The oDir argument is the name of the directory
where the registration results should be stored and inT the input transform in the ITK’s format. In the output
directory, MultiImageRegistration will save the outTransform.txt file with the output transform, the
outMatrix.txt text file with the same transform but written as a 4 by 4 matrix, the inMatrix.txt file with
the input transform matrix and the moving image’s projections named projectionk.mha with k from 0 to
N−1. Lastly, subtraction between the projections and the fixed images are stored as subtractionk.mha.

Running MultiImageRegistration with the following parameters

MultiImageRegistration moving.thr.mha 2 fixedAP.roi.mha 0 1000 0 fixedLAT.roi.mha -1000 0 0
outDir inTransform.txt

registers the CT scan of the previous examples to its DRRs taken at the LAT and AP orientations. Results
are saved in the outDir directory and inTransform.txt is an example transform which serves as a starting
point for the registration, with angles of -0.1, -0.2 and 0.2 radians for the x, y and z axes (-5.73◦, -11.4592◦

and 11.4592◦ respectively) and displacements of -4.9, -4.7 and 0.7 millimetres along x, y and z. After
registration, transform parameters are set to -0.0003, 0.0002 and 0.0003 radians (-0.0172◦, 0.0115◦ and
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Figure 5: Results of the MultiImageRegistration program using a LAT (top row) and AP (bottom row) fixed im-
ages. Figures show the projections before registration (left column), the subtraction between each projection and its
corresponding fixed image before registration (middle column) and the subtraction after registration (right column).

1 10 20 30 39

0.6

0.8

1.0

1.2

1.4

1.6

Iterations

G
C

(a)

1 10 20 26

1.4

1.6

1.8

2.0

Iterations

G
C

(b)

1 10 20

1.6

1.8

2

Iterations

G
C

(c)

Figure 6: Normalized Gradient Correlation plots of the MultiImageRegistration example for all three resolution
levels (a) 4x downsampling (b) 2x downsampling (c) no downsampling

0.0172◦ respectively) and -0.0029, 0.0168 and -0.0147 mm, which is quite close to the correct transform
which has all its parameters equal to zero. Figure 5 shows the projections’ aspect before registration and
the subtractions between the projections before and after registration, which clearly show how matching
between the images is improved. Figure 6 shows the Normalized Gradient Correlation metric evolution for
the three resolution levels of the registration.

Testing of the MultiImageRegistration application with a more realistic input was done using the dataset
provided by the Image Sciences Institute of the University of Utrecht (http://www.isi.uu.nl/Research/
Databases/GS/), comprised of CT, MR, three-dimensional radiography (3DRX) and fluoroscopy images
of eight different vertebrae and complemented with a standardised protocol for evaluation of registration
algorithms [8]. The aforementioned protocol defines the ground-truth transform for each image and 200
initial transforms with mean Target Registration Errors (mTRE) uniformly distributed between 0 and 20
mm. Combination of the vertebrae and starting transforms give a total of 1600 registrations for evaluation
of each algorithm, which are considered successful if their final mTRE is below 2 mm. The protocol also
establishes calculation of the methods’ capture range as the value of the initial mTRE with a percentage of
successful registrations of 95%.

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3264]
Distributed under Creative Commons Attribution License

http://www.isi.uu.nl/Research/Databases/GS/
http://www.isi.uu.nl/Research/Databases/GS/
http://www.insight-journal.org
http://hdl.handle.net/10380/3264
http://creativecommons.org/licenses/by/3.0/us/


16

0 10 20 30
0

5

10

15

20

25

30

initial mTRE [mm]

fin
al

 m
T

R
E

 [m
m

]

(a)

0 10 20 30
0

5

10

15

20

25

30

initial mTRE [mm]

fin
al

 m
T

R
E

 [m
m

]

(b)

Figure 7: Standard evaluation of the MultiImageRegistration application using 2 x-ray images for registration of a
3DRX (a) and a CT (b) datasets. Each point represent a registration result on eight different vertebrae (200 registration
per vertebra, 1600 in total). Registration are considered successful when their final mTRE is less than 2mm, indicated
by the plots’ horizontal line.

The MultiImageRegistration was evaluated with the 3DRX and CT images. The MR images were not
used as their intensities have no direct relation with the x-rays’, which prevents the use of intensity-based
methods. Figure 7 shows the initial and final mTRE for each of the 1600 registrations performed for each
imaging modality. For the 3DRX, mean mTRE of the successful registrations was 0.5827 mm, success rate
was 62.06% and capture range was 6.6864 mm. For the CT images mean mTRE was 0.3511 mm, success
rate was 61.31% and capture range was 7.5229 mm. Comparison of these values with evaluations of other
algorithms under the same protocol [3] show that MultiImageRegistration fares well in comparison
with intensity-based [4], gradient-based [7] and reconstruction-based methods [6], but requires additional
robustness to reach the level of more sophisticated methods, such as the Robust Gradient Reconstruction-
Based Extended method (RGRBe) proposed by Markelj et al [3].

Due to licensing reasons, it is not possible to include the used datasets with this article. However, they
are available for public use on the Image Sciences Institute website (http://www.isi.uu.nl/Research/
Databases/GS/) and interested readers are encouraged to download them for their own research.

4 Conclusions and future work

A framework for 2D-3D registration has been proposed which effectively increases the ITK capabilities
for this type of application. The framework allows registration of a single moving 3D image to multiple
fixed 2D projections, which solves the ITK’s limit of a single fixed image per registration. In addition, both
moving and fixed images can be defined in any position and orientation in space, which solves the problem
of the moving image’s orientation which, in the original ITK implementation, was completely ignored and
assumed to be parallel to the world’s axes. Two additional similarity metrics were added –Normalized
Gradient Correlation and Pattern Intensity– and a new implementation of the Gradient Difference metric
was proposed. The framework’s interface has been kept similar to the one used by ITK, so any developer
familiar with the toolkit should become accustomed to the proposed framework with minimal effort. Source
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code, unit tests and example applications are provided, along with results that demonstrate the framework’s
capabilities with real and simulated data.

Future work should address limitations such as the lack of support for multi-threading and the restriction for
transforms, which are currently limited to rigid ones due to the ray-casting algorithm’s implementation. In
addition, only intensity based registration was addressed, which prevents the application of the framework
in cases where a direct correlation between the intensities of the moving and fixed images does not exist,
such as the case of registration of 3D MR images to multiple x-ray projections. For this, gradient-based
methods could be used [2], which would require additional extensions to ITK.
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