
Criminisi Inpainting
Release 0.00

David Doria

February 4, 2011

Rensselaer Polytechnic Institute, Troy NY

Abstract

This document presents a system to fill a hole in an image by copying patches from elsewhere in the im-
age. These patches should be a good continuation of the hole boundary into the hole. The patch copying
is done in an order which attempts to preserve linear structures in the image. This implementation is
based on the algorithm described in “Object Removal by Exemplar-Based Inpainting” (Criminisi et. al.).

The code is available here: https://github.com/daviddoria/Inpainting

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Terminology 2

3 Algorithm Overview 2

4 Algorithm Synthetic Demonstration 2

5 Algorithm Realistic Demonstration 3

6 Algorithm Structure 4

7 Algorithm Details 4
7.1 Priorities . 4

Confidence Term . 5
Data Term . 5

7.2 Patch Matching . 5

2

8 Implementation Details 5
8.1 Isophotes . 5
8.2 Boundary Normals . 7

Computing boundary normals only on the one pixel thick boundary 7
Using the correct side of the masked region as the boundary 7
Code Snippet . 8

1 Introduction

This document presents a system to fill a hole in an image by copying patches from elsewhere in the image.
These patches should be a good continuation of the hole boundary into the hole. The patch copying is done
in an order which attempts to preserve linear structures in the image. This implementation is entirely based
on the algorithm described in [1]. There are many subtle details of the implementation which are explained
throughout this paper.

2 Terminology

Throughout this document, the “source region” is the portion of the image which is known (is not part of
the hole) at the beginning. The “target region” is the current hole to be filled.

3 Algorithm Overview

The inputs to the algorithm consist of an image and a binary mask the same size as the image. Non-zero
pixels in the mask indicate the region of the image which is to be considered the hole to inpaint/complete.
Throughout this paper, we have colored the region in the input image corresponding to the hole bright green.
This color irrelevant - we have done this only to make it obvious to tell if any part of the hole remains after
inpainting (it should not). In practice, the input image need not be modified.

4 Algorithm Synthetic Demonstration

Figure 1 shows a synthetic demonstration of the algorithm. The image consists of a black region (top) and
a gray region (bottom). This simple example is used for testing because we know the result to expect - the
dividing line between the black region and gray region should be continued smoothly.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

3

(a) Image to be filled. The region to be
filled is shown in bright green.

(b) The mask of the region to inpaint. (c) The result of the inpainting.

Figure 1: Synthetic Demonstration

5 Algorithm Realistic Demonstration

Figure 2 shows a real example of the algorithm. This result shows the typical quality of inpainting that the
algorithm produces.

(a) Image to be filled. The region to be
filled is shown in bright green.

(b) The mask of the region to inpaint. (c) The result of the inpainting. This
took about 30 seconds on a P4 3GHz pro-
cessor with a 206x308 image and a patch
radius = 5.

Figure 2: Realistic Demonstration

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

4

6 Algorithm Structure

An overview of the algorithm is:

• Initialize:

– Read an image and a binary mask. Non-zero pixels in the mask describe the hole to fill.

– Set the size of the patches which will be copied. (Typically an 11x11 patch (patch radius = 5) is
used).

– Locate all patches of the image which are completely inside the image and completely in the
source region. These are stored as an std :: vector < itk :: ImageRegion < 2 >> named Sour-
cePatches.

• Main loop:

– Compute the priority of every pixel on the hole boundary (see Section 7.1)

– Determine the boundary pixel with the highest priority. We will call this the target pixel. The
region centered at the target pixel and the size of the patches is called the target patch.

– Find the SourcePatch which best matches the portion of the target patch in the source region.

– Copy the corresponding portion of the source patch into the target region of the target patch.

– Repeat until the target region consists of zero pixels.

7 Algorithm Details

The two main parts of the algorithm are

1. Determine the priority of each boundary pixel. This determines the order with which the hole is filled.

2. Find the best matching patch to the patch around the pixel with the highest priority.

7.1 Priorities

The priority P(p) of a pixel p is given by the product of a Confidence term C(p) and a Data term D(p).

P(p) = C(p)D(p) (1)

The original author describes the terms:

“C(p) may be thought of as a measure of the amount of reliable information surrounding the pixel ’p’. The
intention is to fill first those patches which have more of their pixels already filled, with additional preference
given to pixels that were filled early on (or that were never part of the target region).”

“D(p) is a function of the strength of the isophotes hitting the front at each iteration. This term boosts the
priority of a patch that an isophot ”flows“ into. This factor is of fundamental importance in our algorithm
because it encourages linear structures to be synthesized first, and, therefore propagated securely into the
target region.”

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

7.2 Patch Matching 5

Confidence Term

The confidence term is computed as:

C(p) = ∑Confidences of patch pixels in the source region
Area of the patch

(2)

To initialize, the confidence inside the hole is set to 0 and the confidence outside the hole is set to 1.

Data Term

The data term is computed as:

D(p) =
dot(isophote,boundary normal)

α
(3)

α is a normalization factor that should be set to 255 for grayscale images, but that value also seems to work
well for RGB images.

No initialization is necessary because this term is not recursive - it can be computed from the data directly
at each iteration.

7.2 Patch Matching

To compare two patches (a source patch and a target patch), we compute the normalized sum of squared
differences between every pixel which is in the source region of target patches (all pixels of the SourcePatch
are in the source region by definition).

8 Implementation Details

8.1 Isophotes

An isophotes is simply a gradient vector rotated by 90 degrees. It indicates the direction of “same-ness”
rather than the direction of maximum difference. There is a small trick, however, to computing the isophotes.
We originally tried to compute the isophotes using the following procedure:

• Convert the RGB image to a grayscale image.

• Blur the grayscale image.

• Compute the gradient using itkGradientImageFilter.

• Rotate the resulting vectors by 90 degrees.

• Keep only the values in the source region.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

8.1 Isophotes 6

This procedure produces the gradient magnitude map shown in Figure 3.

Figure 3: Result of naively computing the image gradient.

The high values of the gradient magnitude surrounding the target region are very troublesome. The resulting
gradient magnitude image using this technique is sensitive to the choice of the pixel values in the target
region, which we actually want to be a completely arbitrary choice (it should not affect anything). More
importantly, the gradient plays a large part in the computation of the pixel priorities, and this computation
is greatly disturbed by these erroneous values. Simply ignoring these boundary isophotes is not an option
because the isophotes on the boundary are exactly the ones that are used in the computation of the Data
term. To fix this problem, we immediately dilate the mask specified by the user. This allows us to compute
the isophotes as described above, but now we have image information on both sides of the hole boundary,
leading to a valid gradient everywhere we need it to be. Figure 4 shows the procedure for fixing this problem.

(a) Image to be filled. The target region
is shown in green.

(b) The dilated mask. (c) The gradient magnitude with pixels
in the new (enlarged) target region set to
zero.

Figure 4: Procedure for fixing the erroneous gradient problem.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

8.2 Boundary Normals 7

As you can see, this gradient magnitude image is exactly what we would expect.

8.2 Boundary Normals

There are two things to be careful with when computing the boundary normals: computing the normals only
on the one pixel thick boundary, and using the correct side of the masked region as the boundary.

Computing boundary normals only on the one pixel thick boundary

If we compute the normals directly on the binary mask, the set of resulting vectors are too discretized to
be of use. Therefore, we first blur the mask. However, the gradient of the blurred mask results in non-zero
vectors in the gradient image in many more pixels (a “thick” boundary) than the gradient of the original
mask (a single pixel “thin” boundary). Therefore, we must mask the gradient of the blurred mask to keep
only the pixels which would have been non-zero in the original mask gradient.

Using the correct side of the masked region as the boundary

There are two potential boundaries that can be extracted from a masked region - the “inner” boundary and
the “outer” boundary. As shown in Figure 5, the inner boundary (red) is composed of pixels originally on
the white (masked) side of the blob, and the outer boundary (green) is composed of pixels originally on
the black (unmasked) side of the blob. It is important that we use the outer boundary, because we need
the boundary to be defined at the same pixels that we have image information, which is only in the source
(black/unmasked) region.

(a) The inner boundary. (b) Outer boundary (green) and inner
boundary (red).

Figure 5: Inner vs Outer Boundary of a Region

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

References 8

Code Snippet

The CriminisiInpainting class must be instantiated using the type of image to be inpainted. Then the patch
radius must be set, the image and mask provided, and the Inpaint() function called.

CriminisiInpainting<ImageType> Inpainting;
Inpainting.SetPatchRadius(5);
Inpainting.SetImage(imageReader->GetOutput());
Inpainting.SetInputMask(maskReader->GetOutput());
Inpainting.Inpaint();

ImageType::Pointer result = Inpainting.GetResult();

If you would like to see what happens at every step of the algorithm, you can use:

Inpainting.SetWriteIntermediateImages(true);

NOTE: Several images are output at each iteration - these files could be quite large!

References

[1] A. Criminisi, P. Perez, K. Toyama, Object Removal by Exemplar-Based Inpainting. Computer Vision
and Pattern Recognition 2003 1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3250]
Distributed under Creative Commons Attribution License

