Itk:: Transforms supporting spatial derivatives

Release 1.0
Marius Staring1 and Stefan Klein?

September 8, 2010

IDivision of Image Processing, Leiden University Medical Center, Lidde Netherlands
2Biomedical Imaging Group Rotterdam, Departments of Radiology & Medicarinétics, Erasmus MC,
Rotterdam, The Netherlands

Abstract

This document describes the use and implementation of fidtseacond order spatial derivatives of
coordinate transformations in the Insight Toolkitvv.itk.org). Spatial derivatives are useful for many
types of regularising or penalty terms frequently used iagemregistration. These derivatives are dubbed
'SpatialJacobian’ and 'SpatialHessian’ to distinguisthwine derivative to the transformation parameters
themselves, which is called ‘Jacobian’ in the ITK.

In addition to the spatial derivatives, we derived and impated the derivatives to the registra-
tion/transform parameters of these spatial derivativeguired for gradient descent type optimisation
routines. These derivatives are implemented in a sparseenareducing the computation time for
transformations which have local support. All of these dgives are implemented for the most com-
mon ITK coordinate transformation, such as the rigid, afind B-spline transformation. In addition
we derive formulae and code for arbitrary compositionsafisformations. The spatial derivatives were
subsequently exploited by implementing the bending enpemalty term.

This paper is accompanied with the source code, input datapgeters and output data that the au-
thors used for validating the algorithm described in thiggzaThis adheres to the fundamental principle
that scientific publications must facilitate reprodudtibf the reported results.

Latest version available at thesight Journa] http://hdl.handle.net/10380/1338 |
Distributed undeCreative Commons Attribution License

Contents

1 Introduction 2
2 Support for penalty terms in the ITK 3
3 Affine transformation 6
4 B-spline transformation 6

5 Combining transformations 8

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

6 Bending energy penalty term 9

7 Discussion and Conclusion 10

1 Introduction

Image registration is the process of aligning images, and can be defineedpsraisation problemZ]:
ﬁ:argrrdinc(lp,lM;p), 1)

with Ir andly the d-dimensional fixed and moving image, respectively, pride vector of parameters of
sizeN that parameterise the transformatibp = [Ty 1,... ,Tu’d]Jr = [Ty,...,T4], where we have droppqd
for short notation, and wheredenotes transposition. The cost functiortonsists of a similarity measure
S(Ig,Im;) that defines the quality of alignment. Examples are the mean square di#eranrenalised
correlation, and mutual information measure. In order to regularise thefdramationT |, often a penalty
term (M) is added to the cost function, so the problem becomes:

ﬁ:argr?lins(lFalM;u)+afp(u)a 2)

whereaq is a user-defined constant that weighs similarity against regularity.

Penalty term are often based on the first or second order spatishitlers/of the transformatiorb][6]. For
example the bending energy of the transformation, which is arguably theaowshon penalty term, is
defined in 2D as:

PT
7ee(H) = 52 axaxt %) . (3)
1 02T, 2T _\? [T _*
53 Z <ax1]) z(axla’xzui)) +(6X%‘<xi>> , @

whereP is the number of pointX;, and the tilde denotes the difference between a variable and a given point
over which a term is evaluated.

The optimisation problemd] is frequently solved using an iterative gradient descent roudijpe [
65 agp
O ap

with ax a user-defined (or automatically determin&}) Heclining function that defines the step size.

et = B aka . ak((5)

The derivative of the similarity measure usually involves computation of th@ésgarivative of the moving
image: dly/0X, and the derivative of the transformation to its parametém;/op. In the ITK the last
derivative is implemented usintgansform->GetJacobian() , i.e. the derivative to the transformation
parameterglis referred to as ‘Jacobian’.

Penalty terms usually consist of the first and second csgatial derivatives of the transformation, i.e.
dT /0x andd?T /axax™. We will refer to these derivatives as the ‘SpatialJacobian’ and theisBHassian’

Latest version available at thesight Journal http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

Name definition matrix size written out in 2D
Transformation
> T1(X)
T=TuX dx1 -
H() X _Tz(X)
Jacobian
'0T1 6T1
T w7 am ™
aTn(X) dxN aTz(. @(X)
L0 O
SpatialJacobian
0Ty .. 0Tq
X) 5~ (X)
AN dxd " 0%
0x o2 X E(g)
aX] 6x2
JacobianOfSpatialJacobian
0 0T _ [0 oT 0 oT
v vy N Yiu vip
apox X dxdx 9 ox X o ox X
SpatialHessian
0°Ty L 0°T, °T,
T o0x axl X 0X20%1 X o0Xx 6x1 X ox axl ()
axax’f(x) dxdxd % % aaTl < % % % (i)
axzaxl 0X%20X2 axzaxl 0X%20Xo
JacobianOfSpatialHessian
0 0°T [0 0°Ty, 0 0°Ty
————(X) dxdxdxN |[— H e — H
auaxaxt X dxdxdxN o X o axaxt X

Table 1. Naming conventions and definitions for the transformation and itsatees used in this paper.

to clearly distinguish between these derivatives and the ‘Jacobiantder dJo apply the gradient descent
optimisation routine§), we additionally need the derivativg§oT /0x and ; 62T/6x6x’r These we call
the ‘JacobianOfSpatialJacobian’ and JacoblanOfSpatlalHessmpecﬂvely See Tablefor details.

The paper is organised as follows: The interface of the proposetidnecand the chosen data structures is
described in Sectio®. In Sections3 and4 we give the mathematics for the 2D case of the spatial derivatives
for the affine and B-spline transform, respectively. Attention is paid to dmebination of multiple trans-
forms in Sectiorb. In that section, equations are derived for the spatial derivatieis for transformations
that are combined using addition as well as composition. Finally, in Se6titre spatial derivatives are
utilised for the computation of the valugsg(p) and derivative(%?BE(u) of the bending energy penalty
term. The described new functionality was released in the registration telaliik [2] previously. With

this contribution we hope to make the functionality available to a greater audience

2 Support for penalty terms in the ITK

The spatial derivative of the transform is not supported in the ITK. Wegse to add the following functions
in the itk:: Transform class:

Latest version available at thesight Journa] http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

Name ITK structure

Jacobian Array2D = vnl _matrix
SpatialJacobian Matrix = vnl _matrix _fixed
JacobianOfSpatialJacobiarstd::vector< Matrix >
SpatialHessian FixedArray< Matrix > 1

JacobianOfSpatialHessian std::vector< FixedArray< Matrix > >
NonZeroJacobianindices std::vector< unsigned long >

Table 2: The ITK structures that store the data.

virtual void GetSpatialJacobian(
const InputPointType &,
SpatialJacobianType &) const;

virtual void GetSpatialHessian(
const InputPointType &,
SpatialHessianType &) const;

virtual void GetJacobianOfSpatialJacobian(
const InputPointType &,
JacobianOfSpatialJacobianType &,
NonZeroJacobianindicesType &) const;

virtual void GetJacobianOfSpatialHessian(
const InputPointType &,
JacobianOfSpatialHessianType &,
NonZeroJacobianindicesType &) const;

and additionally a function to implement a sparse version of the Jacobian:

virtual void GetJacobian(
const InputPointType &,
JacobianType &,
NonZeroJacobianindicesType &) const;

The ITK structures that were used to store the data are given in Zabléne Jacobian is of sizé x N,
and since the number of transformation parameters is flexible for someainanagions, the data structure
used for storing the Jacobian is atk::Array2D object, which inherits from thenl _matrix . This was
already chosen previously in the ITK. The SpatialJacobian is of fixeddsizé, and therefore (and for
performance reasons) we choose to useitthiatrix to store the SpatialJacobian, which inherits from
thevnl _matrix _fixed . For derivatives tqa we choose to use thstd::vector . The SpatialHessian gives
us some problems, since we really need a 3D matrix, but currently no sughettists in the ITK or in vnl.
Therefore, we opt for aritk::FixedArray of itk::Matrix ’s.

Notice the NonZeroJacobianindicesType in the function definitions. These are meant for the sup-
port of sparselacobians , JacobianOfSpatialJacobians , etc. For local transformations like the B-

by lack of a good 3D matrix structure

Latest version available at thiesight Journal http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Array2D.html
http://www.itk.org/Doxygen/html/classitk_1_1Matrix.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Matrix.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

Jacobian for a single point P=(x,¥,2,)
chI cx1 CX2 ch cyCI c)‘1 cyz cY3 CZU CZ1 CZ2 CZB

X W1 W2

1 2 3 4 5 6 7 8 9 10 11 12

Jacobian (Updated) for a single point P=(x,y,z,)
cx1 ch c)’1 CYZ cz1 CZZ

X W W,

nzji
| 2| 3| 6] 7[10]n]

Figure 1: lllustrating sparse Jacobians. This figure is based on a 3Wirigd4ransform, where the pa-
rametersjt are formed by the control point displacements= (c{‘,ciy, c¢/). The principle applies to any
transformation with sparse Jacobians though. The top matrix shows theenmentries of the full Jacobian
matrix. The same information can be represented shorter by only storirg nioeszero entries and the
corresponding indices (nzji), see bottom two images. Image courtesy ldiokks.

spline, only a small subset of the parametprare needed to comput®T /du for a given coordinate

X (and also forT(x)), see Figurel. The same holds for théacobianOfSpatialJacobian %3—1

and theJacobianOfSpatialHessian %% although theNonZeroJacobianindicesType are based
on that of 0T /op. For some transformations, e.g. the affine transform, SpeialHessian or the
JacobianOfSpatialHessian are completely filled with zeros. For computational purposes the following

functions were therefore added

I** Whether the advanced transform has nonzero matrices. */
itkGetConstMacro(HasNonZeroSpatialHessian, bool);
itkGetConstMacro(HasNonZeroJacobianOfSpatialHessian , bool);

These functions allow skipping parts of a computation involving these matrices.

As a side note, in the ITKsetJacobian() is declared as:
virtual const JacobianType & GetJacobian(const InputPoin tType &) const;

and the result is stored in a protected member varimblacobian . Although only subclasses can access
this member, it should be noted that the result is only valid in combination with thedeabinput point,
for transformations with a derivative dependent on the spatial positibithvare most. Therefore, it may
be better to remove this member variable altogether.

Latest version available at thiesight Journal http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

We have implemented the above for many of thik:Transform 's, in new classes which are copies
of the original ITK classes. The names of the new classes are prapemitle ‘Advanced’. In
the end it would be best to integrate the new functionality in the original ITKsels Advanced

versions of the itk::IdentityTransform , itk::Rigid2DTransform , itk::Rigid3DTransform ,
itk::MatrixOffsetTransformBase , itk::BSplineDeformableTransform , and additionally for the
itk::CombinationTransform (see fl]) are available.

3 Affine transformation

For the affine transformation, the derivatives evaluate to the following in 2D

A _|ain ap| [xi—c1 t1+C
T(X)=AXx—-c)+t+c= [aZl azz] {Xz - cz] + [tz + CJ ©)
_ [Ho | [¥a—Ci| | [HatC 7 (7)
Ho Ha] [X2—C2] [Ms+C2

with A a matrix,c the center of rotation, artda translation. Then

oT _ . Xl—Cl Xz—Cz 0 0 10
ap(x)_[0 0 %-¢ %-c 0 1] ®
oT Ho U—l]
—(X) = , 9
ox ¥ le Mg ©)
°T
xaxt %) = Odxalxd; (10)
00T _ 1 0 |0 1/ [0 O] [0 O
@&(X) - { |:0 0:|) |:o O:|) |:1 0:|) |:0 1:| >Od><dyod><d}7 (11)
0 0°T _
31 9xaxT (X) = OdxdxdxN: (12)
whereQgs is a zero matrix of size.
The GetJacobianOfSpatialJacobian() returns nonZeroJacobianindices = 10,1,2,3,4,5|,
since 0T /dy is nonzero for alli. The internal booleansn_HasNonZeroSpatialHessian and
m_HasNonZeroJacobianOfSpatialHessian are set tofalse for the affine transform. The imple-

mentation of the penalty term is assumed to check for these booleans. lof@saffine transform the
penalty term can simply return zero. This is a performance benefit cothpanaalking over the zero
matrix, and adding and multiplying everything, which in the end also gives zero

These derivatives are implemented in titte:AdvancedMatrixOffsetTransformBase class.
4 B-spline transformation

A transformation parameterised by third order B-splines can be written irsZ0llaws:

e] |l () B (R
T®= [Tz(i)} a [%2:| * |:Z| MZBS éilclxlg BS >720;2X'2) (13)

Latest version available at thiesight Journal http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Rigid2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Rigid3DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1MatrixOffsetTransformBase.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CombinationTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AdvancedMatrixOffsetTransformBase.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

with X' the control pointsp®(-) the third-order B-spline basis functiorns, ando, the B-spline grid spacing,
and; the B-spline parameters. Sinfé ((X —Xij)/Oj) is zero outside the compact support region, the
summations in13) can be performed over a subset of the parameters, instead of ovamntipdetep. As
mentioned previously, this is implemented via the nonzero Jacobian indices.

For short notation, define:

ba =B ((}a—xy)/01) - B (2 — X5) /02) , (14)
ba= [P ((Xa— X)) /01+3) — P (Xa— %) /01— 2)] - B3 ((Ro — %) /02) /01, (15)
b =B ((a—x1)/01) - [B* (e —Xp) /02 + 3) — B (e —%3) /02— 3)] /02, (16)
bo = [B? (K —x1) /o1 + 3) — B ((Ka— %) /01— 3)] 17)

[B* (2 —%p) /024 3) — B? (e —Xp) /02— 3)] /(0102),
ha=[BH((Fa—x)/01+1) — 28" ((a—%1)/01) + B ((a —x1) /01— 1)] - B* (e — %) /02) /0%, (18)
b= B3 (K —x))/01) - [BH (e — %) /02 +1) — 2B (%2 — %) /02) + B (%2 — %) /02— 1)] /03 (19)

Let S= (3+1)¢ be the number of control points in the support of the multi-dimensional thirer@espline.
Then, we derive from the above equations:

oT . bgs b§§1 0O --- 0
i Mzbzs 1+ 3iHi2bs,|
aZT :{|: |M1b13 Z|M1b22:| |:ZiM2b5_3 ZiMZbéz]} (22)
axox" |Mlb22 Yikabsy| " [Tiki2h, 3iHi2byy
0 aT _ 23 bgz bggl bl [O O] [0 O (23)
auax 0 0]'[b3; bJ|" " [b3* b5t
0 62T bfl>3 bO bzt b3t
anaxaxt X {{[b(z)z bSJ O"*d} {[bil b“] O"*“}
bO bO b&l b&l
ooy B} 0B E])
where in 0), (23) and @4) we only show the nonzero derivatives. These derivatives are implexhe the
itk::AdvancedBSplineDeformableTransform class. In addition, we needed some helper classes, such

as the

itk::BSplinelnterpolationWeightFunctionBase ,
itk::BSplinelnterpolationDerivativeWeightFunction ,
itk::BSplinelnterpolationSecondOrderDerivativeWeigh tFunction

which implement the B-spline interpolation weigtitsirom above. Furthermore, we changed some of the
existing B-spline kernel functions and interpolators for performanbamcements:

itk::BSplinelnterpolationWeightFunction2 ,
itk::BSplineKernelFunction2 ,
itk::BSplineDerivativeKernelFunction2 ,
itk::BSplineSecondOrderDerivativeKernelFunction2

Latest version available at thesight Journal http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1AdvancedBSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationWeightFunctionBase.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationDerivativeWeightFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationSecondOrderDerivativeWeightFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationWeightFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineKernelFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineDerivativeKernelFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineSecondOrderDerivativeKernelFunction2.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

For example theitk::BSplineKernelFunction2 omits the evaluation of if-statements, and the last two

classes explicitly write out the relationsrﬁg(x) = a%‘zl (X+3)— a%‘:l (x—3).

5 Combining transformations

In the Insight Journal submissiod][we proposed the clastk::CombinationTransform for combining
multiple transformations by addition or composition. Adding transformations is @ian

T(X) =To(x) + Ta(x) — X, (25)

whereT(X) is the initial transformation and@i1 (X) the current transformation. As explained 4 fnly the
current transformation is optimised during the registration. Composition afframations is defined by:

T(X) =Ta(To(x)). (26)

For these combined transformations we need to derive the relations fospghgal) derivatives. Define
y=To(X), then:

name combo formulae

Jacobian
add a}; aa (To(X)+ T1(X)—X) = aauTl(i)
compose 0“ aau(Tl(To(?))) = aauTl(Y)

SpatialJacobian

add oT 0 d 0

ax X = 55 (To®) +T1(X) —%) = aXTo(i):rax
compose Z¥(%) - (%(y)) Tom=(Tom) Tk

JacobianOfSpatialJacobian

Ta(x) -1

0 oT _ 0 0 0 0 "
add %lg_)l(_(x) = @§ (To(X) +T1(X) ;XL— dpax;l(x)
compose ﬁ&(x) = audx (T1(To(x))) = @&Tl(y) : &TO(X)
SpatialHessian
°T 92 - SO 92 " 92
add s)= g (o) +) %) = mTo(x)Jr i T

Ty oTik, \' 82To .. [(dTo 2Tix, . 0To
compose (%) = (3y)) 5 5o 0+ (5) o520

0X;0X;
JacobianOfSpatialHessian
a 0°T _ a 0? - a 0° _
add g ianan ® = auawax (T +Ta®) %)= au(.,m.,xjmx)
0 0%Tx ale’k aZTo . 0Ty 0 aZle 0To -
compose 5 axax; X = apaxt V) axax; © <a>q(x)> <6p6x6xT()> ax %)
These derivatives are implemented in title:AdvancedCombinationTransform class.
Latest version available at thiesight Journal http://hdl.handle.net/10380/1338]

Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1BSplineKernelFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1CombinationTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AdvancedCombinationTransform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

6 Bending energy penalty term

To showcase the use of these spatial derivatives we implemented the deneigy penalty term, which
was defined as:

1o 2 (P)2
P = — (X)) . 27
BE(“) Pz I%il axlaxm(|) ()
We constructed an itk::TransformBendingEnergyPenaltyTerm which (finally) inherits from the
itk::lmageTolmageMetric . TheGetValue() -method is implemented like:
if ('transform->GetHasNonZeroSpatialHessian()) return 0;

SpatialHessianType spatialHessian;
for all samples

this->GetTransform()->GetSpatialHessian(sample, spat ialHessian);
for all k, I, m
measure += spatialHessian[k]J[|][m]2;
end
end

measure /= numberOfSamples;

For theGetValueAndDerivative() we have:

d 2 asz % 0 0°Ty
- 2
o eE (M Pz 2 2awawn ™ apaxax, (28)

Xi kl,m=1

which is implemented like:
if ('transform->GetHasNonZeroSpatialHessian()
&& 'transform->GetHasNonZeroJacobianOfSpatialHessian 0)
value = 0; derivative = 0; return;

SpatialHessianType spatialHessian;

JacobianOfSpatialHessianType jacobianOfSpatialHessia n;

for all samples
this->GetTransform()->GetSpatialHessian(sample, spat ialHessian);
this->GetTransform()->GetJacobianOfSpatialHessian(s ample,

jacobianOfSpatialHessian, nonZeroJacobianindices);
for all nonZeroJacobianindices, k, I, m
derivative[nonZeroJacobianindices[mu] | += 2.0
* gpatialHessian[k [i][]
* jacobianOfSpatialHessian[mu J[K [i 1[] I;
end
end
derivative /= numberOfSamples;

It must be noted that thetk::TransformBendingEnergyPenaltyTerm class inherits from a derived
version of the itk::ImageTolmageMetric class, which adds support for image samplers. The image
Latest version available at thesight Journal http://hdl.handle.net/10380/1338]

Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1TransformBendingEnergyPenaltyTerm.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformBendingEnergyPenaltyTerm.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

10

sampling framework is described in another Insight Journal papef7kefs such the compilation of this
class will only succeed in combination with these ‘enhanced’ classes.

7 Discussion and Conclusion

This document describes the use and implementation of spatial derivdtivesrdinate transformations in

the ITK. In addition, the derivatives to the transformation parameters eéthpatial derivatives are given,
required for gradient descent like optimisation routines. The latter are imptechén a sparse manner.
We created new versions of the identity, rigid, affine and B-spline tramsftion. Also, combinations of

transformations benefit from the proposed enhancements.

The spatial derivatives were subsequently exploited by the bendirgyepenalty term. Their usage is,
however, not limited to that penalty term, and many more penalty terms can be impdehosing the new
functionality.

References

[1] S. Klein, J. P. W. Pluim, M. Staring, and M. A. Viergever. Adaptivecstastic gradient descent optimi-
sation for image registrationnternational Journal of Computer VisioB81(3):227-239, 2009

[2] S. Klein, M. Staring, K. Murphy, M.A. Viergever, and J.P.W. Pluim. ¢basa toolbox for intensity-
based medical image registratiofEEE Transactions on Medical Imaging9(1):196 — 205, 20101,
1

[3] S. Klein, M. Staring, and J. P. W. Pluim. Evaluation of optimization methodsémrigid medical
image registration using mutual information and B-splinBsEE Transactions on Image Processing
16(12):2879 — 2890, December 2007.

[4] Stefan Klein and Marius Staring. Combining transforms in ITK.Insight Journa] 2006.
http://nhdl.handle.net/1926/197 . 2,55

[5] T. Rohlfing, C. R. Maurer Jr., D. A Bluemke, and M. A. Jacobs. Vo&ipreserving nonrigid regis-
tration of MR breast images using free-form deformation with an incomimiésconstraint. IEEE
Transactions on Medical Imaging2(6):730 — 741, 2003L

[6] D. Rueckert, L. I. Sonoda, and C. Hayesal. Nonrigid registration using free-form deformations:
Application to breast MR image$EEE Transactions on Medical Imagin$8(8):712 — 721, 1999

[7] Marius Staring and Stefan Klein. An image sampling framework for the. ITigight Journa) 2010.
http://hdl.handle.net/10380/3190 .6

Latest version available at thesight Journal http://hdl.handle.net/10380/1338]
Distributed undeCreative Commons Attribution License

http://hdl.handle.net/1926/197
http://hdl.handle.net/10380/3190
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Support for penalty terms in the ITK
	Affine transformation
	B-spline transformation
	Combining transformations
	Bending energy penalty term
	Discussion and Conclusion

