
itk::Transforms supporting spatial derivatives
Release 1.0

Marius Staring1 and Stefan Klein2

September 8, 2010

1Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
2Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus MC,

Rotterdam, The Netherlands

Abstract

This document describes the use and implementation of first and second order spatial derivatives of
coordinate transformations in the Insight Toolkit (www.itk.org). Spatial derivatives are useful for many
types of regularising or penalty terms frequently used in image registration. These derivatives are dubbed
’SpatialJacobian’ and ’SpatialHessian’ to distinguish with the derivative to the transformation parameters
themselves, which is called ‘Jacobian’ in the ITK.

In addition to the spatial derivatives, we derived and implemented the derivatives to the registra-
tion/transform parameters of these spatial derivatives, required for gradient descent type optimisation
routines. These derivatives are implemented in a sparse manner, reducing the computation time for
transformations which have local support. All of these derivatives are implemented for the most com-
mon ITK coordinate transformation, such as the rigid, affineand B-spline transformation. In addition
we derive formulae and code for arbitrary compositions of transformations. The spatial derivatives were
subsequently exploited by implementing the bending energypenalty term.

This paper is accompanied with the source code, input data, parameters and output data that the au-
thors used for validating the algorithm described in this paper. This adheres to the fundamental principle
that scientific publications must facilitate reproducibility of the reported results.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

Contents

1 Introduction 2

2 Support for penalty terms in the ITK 3

3 Affine transformation 6

4 B-spline transformation 6

5 Combining transformations 8

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2

6 Bending energy penalty term 9

7 Discussion and Conclusion 10

1 Introduction

Image registration is the process of aligning images, and can be defined as an optimisation problem [2]:

µ̂µµ= argmin
µµµ
C (IF , IM;µµµ), (1)

with IF andIM thed-dimensional fixed and moving image, respectively, andµµµ the vector of parameters of
sizeN that parameterise the transformationTTTµµµ = [Tµµµ,1, . . . ,Tµµµ,d]

† = [T1, . . . ,Td]
†, where we have droppedµµµ

for short notation, and where† denotes transposition. The cost functionC consists of a similarity measure
S (IF , IM;µµµ) that defines the quality of alignment. Examples are the mean square difference, normalised
correlation, and mutual information measure. In order to regularise the transformationTTTµµµ often a penalty
termP (µµµ) is added to the cost function, so the problem becomes:

µ̂µµ= argmin
µµµ
S (IF , IM;µµµ)+αP (µµµ), (2)

whereα is a user-defined constant that weighs similarity against regularity.

Penalty term are often based on the first or second order spatial derivatives of the transformation [5,6]. For
example the bending energy of the transformation, which is arguably the mostcommon penalty term, is
defined in 2D as:

PBE(µµµ) =
1
P ∑̃

xxxi

∥∥∥∥
∂2TTT

∂xxx∂xxx†(x̃xxi)

∥∥∥∥
2

F
(3)

=
1
P ∑̃

xxxi

2

∑
j=1

(
∂2Tj

∂x2
1

(x̃xxi)

)2

+2

(
∂2Tj

∂x1∂x2
(x̃xxi)

)2

+

(
∂2Tj

∂x2
2

(x̃xxi)

)2

, (4)

whereP is the number of points̃xxxi , and the tilde denotes the difference between a variable and a given point
over which a term is evaluated.

The optimisation problem (1) is frequently solved using an iterative gradient descent routine [3]:

µµµk+1 = µµµk−ak
∂C
∂µµµ

= µµµk−ak

(
∂S
∂µµµ

+α
∂P
∂µµµ

)
, (5)

with ak a user-defined (or automatically determined [1]) declining function that defines the step size.

The derivative of the similarity measure usually involves computation of the spatial derivative of the moving
image: ∂IM/∂xxx, and the derivative of the transformation to its parameters:∂TTT/∂µµµ. In the ITK the last
derivative is implemented usingtransform->GetJacobian() , i.e. the derivative to the transformation
parametersµµµ is referred to as ‘Jacobian’.

Penalty terms usually consist of the first and second orderspatial derivatives of the transformation, i.e.
∂TTT/∂xxx and∂2TTT/∂xxx∂xxx†. We will refer to these derivatives as the ‘SpatialJacobian’ and the ‘SpatialHessian’

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

3

Name definition matrix size written out in 2D

Transformation

TTT = TTTµµµ(x̃xx) d×1

[
T1(x̃xx)
T2(x̃xx)

]

Jacobian

∂TTT
∂µµµ

(x̃xx) d×N




∂T1

∂µ1
(x̃xx) · · ·

∂T1

∂µN
(x̃xx)

∂T2

∂µ1
(x̃xx) · · ·

∂T2

∂µN
(x̃xx)




SpatialJacobian

∂TTT
∂xxx

(x̃xx) d×d




∂T1

∂x1
(x̃xx)

∂T1

∂x2
(x̃xx)

∂T2

∂x1
(x̃xx)

∂T2

∂x2
(x̃xx)




JacobianOfSpatialJacobian
∂

∂µµµ
∂TTT
∂xxx

(x̃xx) d×d×N

[
∂

∂µ1

∂TTTµµµ

∂xxx
(x̃xx) · · ·

∂
∂µN

∂TTTµµµ

∂xxx
(x̃xx)

]

SpatialHessian

∂2TTT
∂xxx∂xxx†(x̃xx) d×d×d








∂2T1

∂x1∂x1
(x̃xx)

∂2T1

∂x2∂x1
(x̃xx)

∂2T1

∂x2∂x1
(x̃xx)

∂2T1

∂x2∂x2
(x̃xx)


 ,




∂2T2

∂x1∂x1
(x̃xx)

∂2T2

∂x2∂x1
(x̃xx)

∂2T2

∂x2∂x1
(x̃xx)

∂2T2

∂x2∂x2
(x̃xx)








JacobianOfSpatialHessian
∂

∂µµµ
∂2TTT

∂xxx∂xxx†(x̃xx) d×d×d×N

[
∂

∂µ1

∂2TTTµµµ

∂xxx∂xxx†(x̃xx) · · ·

∂
∂µN

∂2TTTµµµ

∂xxx∂xxx†(x̃xx)

]

Table 1: Naming conventions and definitions for the transformation and its derivatives used in this paper.

to clearly distinguish between these derivatives and the ‘Jacobian’. In order to apply the gradient descent
optimisation routine (5), we additionally need the derivatives∂∂µµµ∂TTT/∂xxx and ∂

∂µµµ∂2TTT/∂xxx∂xxx†. These we call
the ‘JacobianOfSpatialJacobian’ and ‘JacobianOfSpatialHessian’, respectively. See Table1 for details.

The paper is organised as follows: The interface of the proposed functions, and the chosen data structures is
described in Section2. In Sections3 and4 we give the mathematics for the 2D case of the spatial derivatives
for the affine and B-spline transform, respectively. Attention is paid to the combination of multiple trans-
forms in Section5. In that section, equations are derived for the spatial derivatives, both for transformations
that are combined using addition as well as composition. Finally, in Section6, the spatial derivatives are
utilised for the computation of the valuePBE(µµµ) and derivative ∂

∂µµµPBE(µµµ) of the bending energy penalty
term. The described new functionality was released in the registration toolkitelastix [2] previously. With
this contribution we hope to make the functionality available to a greater audience.

2 Support for penalty terms in the ITK

The spatial derivative of the transform is not supported in the ITK. We propose to add the following functions
in the itk::Transform class:

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

4

Name ITK structure

Jacobian Array2D = vnl matrix
SpatialJacobian Matrix = vnl matrix fixed
JacobianOfSpatialJacobianstd::vector< Matrix >
SpatialHessian FixedArray< Matrix > 1

JacobianOfSpatialHessian std::vector< FixedArray< Matrix > >
NonZeroJacobianIndices std::vector< unsigned long >

Table 2: The ITK structures that store the data.

virtual void GetSpatialJacobian(
const InputPointType &,
SpatialJacobianType &) const;

virtual void GetSpatialHessian(
const InputPointType &,
SpatialHessianType &) const;

virtual void GetJacobianOfSpatialJacobian(
const InputPointType &,
JacobianOfSpatialJacobianType &,
NonZeroJacobianIndicesType &) const;

virtual void GetJacobianOfSpatialHessian(
const InputPointType &,
JacobianOfSpatialHessianType &,
NonZeroJacobianIndicesType &) const;

and additionally a function to implement a sparse version of the Jacobian:

virtual void GetJacobian(
const InputPointType &,
JacobianType &,
NonZeroJacobianIndicesType &) const;

The ITK structures that were used to store the data are given in Table2. The Jacobian is of sized×N,
and since the number of transformation parameters is flexible for some transformations, the data structure
used for storing the Jacobian is anitk::Array2D object, which inherits from thevnl matrix . This was
already chosen previously in the ITK. The SpatialJacobian is of fixed sized× d, and therefore (and for
performance reasons) we choose to use theitk::Matrix to store the SpatialJacobian, which inherits from
thevnl matrix fixed . For derivatives toµµµ we choose to use thestd::vector . The SpatialHessian gives
us some problems, since we really need a 3D matrix, but currently no such thing exists in the ITK or in vnl.
Therefore, we opt for anitk::FixedArray of itk::Matrix ’s.

Notice theNonZeroJacobianIndicesType in the function definitions. These are meant for the sup-
port of sparseJacobians , JacobianOfSpatialJacobians , etc. For local transformations like the B-

1by lack of a good 3D matrix structure

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Array2D.html
http://www.itk.org/Doxygen/html/classitk_1_1Matrix.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Matrix.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

5

Figure 1: Illustrating sparse Jacobians. This figure is based on a 3D B-spline transform, where the pa-
rametersµµµ are formed by the control point displacementsccci = (cx

i ,c
y
i ,c

z
i). The principle applies to any

transformation with sparse Jacobians though. The top matrix shows the non-zero entries of the full Jacobian
matrix. The same information can be represented shorter by only storing these non-zero entries and the
corresponding indices (nzji), see bottom two images. Image courtesy of M.Motes.

spline, only a small subset of the parametersµµµ are needed to compute∂TTT/∂µµµ for a given coordinate
xxx (and also forTTT(xxx)), see Figure1. The same holds for theJacobianOfSpatialJacobian ∂

∂µµµ
∂TTT
∂xxx ,

and theJacobianOfSpatialHessian ∂
∂µµµ

∂2TTT
∂xxx∂xxx† , although theNonZeroJacobianIndicesType are based

on that of ∂TTT/∂µµµ. For some transformations, e.g. the affine transform, theSpatialHessian or the
JacobianOfSpatialHessian are completely filled with zeros. For computational purposes the following
functions were therefore added

/** Whether the advanced transform has nonzero matrices. */
itkGetConstMacro(HasNonZeroSpatialHessian, bool);
itkGetConstMacro(HasNonZeroJacobianOfSpatialHessian , bool);

These functions allow skipping parts of a computation involving these matrices.

As a side note, in the ITKGetJacobian() is declared as:

virtual const JacobianType & GetJacobian(const InputPoin tType &) const;

and the result is stored in a protected member variablem Jacobian . Although only subclasses can access
this member, it should be noted that the result is only valid in combination with the provided input point,
for transformations with a derivative dependent on the spatial position, which are most. Therefore, it may
be better to remove this member variable altogether.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

6

We have implemented the above for many of theitk::Transform ’s, in new classes which are copies
of the original ITK classes. The names of the new classes are prepended with ‘Advanced’. In
the end it would be best to integrate the new functionality in the original ITK classes. Advanced
versions of the itk::IdentityTransform , itk::Rigid2DTransform , itk::Rigid3DTransform ,
itk::MatrixOffsetTransformBase , itk::BSplineDeformableTransform , and additionally for the
itk::CombinationTransform (see [4]) are available.

3 Affine transformation

For the affine transformation, the derivatives evaluate to the following in 2D:

TTT(x̃xx) = A(xxx−ccc)+ ttt +ccc=

[
a11 a12

a21 a22

][
x1−c1

x2−c2

]
+

[
t1+c1

t2+c2

]
(6)

=

[
µ0 µ1

µ2 µ3

][
x1−c1

x2−c2

]
+

[
µ4+c1

µ5+c2

]
, (7)

with A a matrix,ccc the center of rotation, andttt a translation. Then

∂TTT
∂µµµ

(x̃xx) =

[
x̃1−c1 x̃2−c2 0 0 1 0

0 0 x̃1−c1 x̃2−c2 0 1

]
, (8)

∂TTT
∂xxx

(x̃xx) =

[
µ0 µ1

µ2 µ3

]
, (9)

∂2TTT
∂xxx∂xxx†(x̃xx) = Od×d×d, (10)

∂
∂µµµ

∂TTT
∂xxx

(x̃xx) =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,Od×d,Od×d

}
, (11)

∂
∂µµµ

∂2TTT
∂xxx∂xxx†(x̃xx) = Od×d×d×N, (12)

whereOs is a zero matrix of sizes.

The GetJacobianOfSpatialJacobian() returns nonZeroJacobianIndices = [0,1,2,3,4,5],
since ∂TTT/∂µi is nonzero for all i. The internal booleansm HasNonZeroSpatialHessian and
m HasNonZeroJacobianOfSpatialHessian are set tofalse for the affine transform. The imple-
mentation of the penalty term is assumed to check for these booleans. In caseof an affine transform the
penalty term can simply return zero. This is a performance benefit compared to walking over the zero
matrix, and adding and multiplying everything, which in the end also gives zero.

These derivatives are implemented in theitk::AdvancedMatrixOffsetTransformBase class.

4 B-spline transformation

A transformation parameterised by third order B-splines can be written in 2D as follows:

TTT(x̃xx) =

[
T1(x̃xx)
T2(x̃xx)

]
=

[
x̃1

x̃2

]
+


∑i µi1β3

(
x̃1−xi

1
σ1

)
β3

(
x̃2−xi

2
σ2

)

∑i µi2β3
(

x̃1−xi
1

σ1

)
β3

(
x̃2−xi

2
σ2

)


 , (13)

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Rigid2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Rigid3DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1MatrixOffsetTransformBase.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CombinationTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AdvancedMatrixOffsetTransformBase.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

7

with xxxi the control points,β3(·) the third-order B-spline basis functions,σ1 andσ2 the B-spline grid spacing,

andµi j the B-spline parameters. Sinceβ3
(
(x̃ j −xi

j)/σ j

)
is zero outside the compact support region, the

summations in (13) can be performed over a subset of the parameters, instead of over thecompleteµµµ. As
mentioned previously, this is implemented via the nonzero Jacobian indices.

For short notation, define:

bi
33 = β3((x̃1−xi

1)/σ1
)
·β3((x̃2−xi

2)/σ2
)
, (14)

bi
23 =

[
β2((x̃1−xi

1)/σ1+
1
2

)
−β2((x̃1−xi

1)/σ1−
1
2

)]
·β3((x̃2−xi

2)/σ2
)
/σ1, (15)

bi
32 = β3((x̃1−xi

1)/σ1
)
·

[
β2((x̃2−xi

2)/σ2+
1
2

)
−β2((x̃2−xi

2)/σ2−
1
2

)]
/σ2, (16)

bi
22 =

[
β2((x̃1−xi

1)/σ1+
1
2

)
−β2((x̃1−xi

1)/σ1−
1
2

)]

·

[
β2((x̃2−xi

2)/σ2+
1
2

)
−β2((x̃2−xi

2)/σ2−
1
2

)]
/(σ1σ2),

(17)

bi
13 =

[
β1((x̃1−xi

1)/σ1+1
)
−2β1((x̃1−xi

1)/σ1
)
+β1((x̃1−xi

1)/σ1−1
)]

·β3((x̃2−xi
2)/σ2

)
/σ2

1, (18)

bi
31 = β3((x̃1−xi

1)/σ1
)
·

[
β1((x̃2−xi

2)/σ2+1
)
−2β1((x̃2−xi

2)/σ2
)
+β1((x̃2−xi

2)/σ2−1
)]
/σ2

2. (19)

Let S= (3+1)d be the number of control points in the support of the multi-dimensional third order B-spline.
Then, we derive from the above equations:

∂TTT
∂µµµ

(x̃xx) =

[
b0

33 · · · bS−1
33 0 · · · 0

0 · · · 0 b0
33 · · · bS−1

33

]
, (20)

∂TTT
∂xxx

(x̃xx) =

[
1+∑i µi1bi

23 ∑i µi1bi
32

∑i µi2bi
23 1+∑i µi2bi

32

]
, (21)

∂2TTT
∂xxx∂xxx†(x̃xx) =

{[
∑i µi1bi

13 ∑i µi1bi
22

∑i µi1bi
22 ∑i µi1bi

31

]
,

[
∑i µi2bi

13 ∑i µi2bi
22

∑i µi2bi
22 ∑i µi2bi

31

]}
(22)

∂
∂µµµ

∂TTT
∂xxx

(x̃xx) =

{[
b0

23 b0
32

0 0

]
, · · · ,

[
bS−1

23 bS−1
32

0 0

]
,

[
0 0

b0
23 b0

32

]
, · · · ,

[
0 0

bS−1
23 bS−1

32

]}
(23)

∂
∂µµµ

∂2TTT
∂xxx∂xxx†(x̃xx) =

{{[
b0

13 b0
22

b0
22 b0

31

]
,Od×d

}
, · · · ,

{[
bS−1

13 bS−1
22

bS−1
22 bS−1

31

]
,Od×d

}
,

{
Od×d,

[
b0

13 b0
22

b0
22 b0

31

]}
, · · · ,

{
Od×d,

[
bS−1

13 bS−1
22

bS−1
22 bS−1

31

]}}
, (24)

where in (20), (23) and (24) we only show the nonzero derivatives. These derivatives are implemented in the
itk::AdvancedBSplineDeformableTransform class. In addition, we needed some helper classes, such
as the

itk::BSplineInterpolationWeightFunctionBase ,
itk::BSplineInterpolationDerivativeWeightFunction ,
itk::BSplineInterpolationSecondOrderDerivativeWeigh tFunction ,

which implement the B-spline interpolation weightsbi from above. Furthermore, we changed some of the
existing B-spline kernel functions and interpolators for performance enhancements:

itk::BSplineInterpolationWeightFunction2 ,
itk::BSplineKernelFunction2 ,
itk::BSplineDerivativeKernelFunction2 ,
itk::BSplineSecondOrderDerivativeKernelFunction2 .

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1AdvancedBSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationWeightFunctionBase.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationDerivativeWeightFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationSecondOrderDerivativeWeightFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolationWeightFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineKernelFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineDerivativeKernelFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineSecondOrderDerivativeKernelFunction2.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

8

For example theitk::BSplineKernelFunction2 omits the evaluation of if-statements, and the last two

classes explicitly write out the relationship∂βo

∂x (x) =
∂βo−1

∂x (x+ 1
2)−

∂βo−1

∂x (x− 1
2).

5 Combining transformations

In the Insight Journal submission [4] we proposed the classitk::CombinationTransform for combining
multiple transformations by addition or composition. Adding transformations is done via:

TTT (xxx) = TTT0(xxx)+TTT1(xxx)−xxx, (25)

whereTTT0(xxx) is the initial transformation andTTT1(xxx) the current transformation. As explained in [4] only the
current transformation is optimised during the registration. Composition of transformations is defined by:

TTT (xxx) = TTT1(TTT0(xxx)). (26)

For these combined transformations we need to derive the relations for the (spatial) derivatives. Define
yyy= TTT0(x̃xx), then:

name combo formulae

Jacobian

add
∂TTT
∂µµµ

(x̃xx) =
∂

∂µµµ
(TTT0(x̃xx)+TTT1(x̃xx)− x̃xx) =

∂
∂µµµ

TTT1(x̃xx)

compose
∂TTT
∂µµµ

(x̃xx) =
∂

∂µµµ
(TTT1(TTT0(x̃xx))) =

∂
∂µµµ

TTT1(yyy)

SpatialJacobian

add
∂TTT
∂xxx

(x̃xx) =
∂

∂xxx
(TTT0(x̃xx)+TTT1(x̃xx)− x̃xx) =

∂
∂xxx

TTT0(x̃xx)+
∂

∂xxx
TTT1(x̃xx)− III

compose
∂Tk

∂xi
(x̃xx) =

(
∂T1,k

∂xxx
(yyy)

)† ∂TTT0

∂xi
(x̃xx) =

(
∂TTT0

∂xi
(x̃xx)

)† ∂T1,k

∂xxx
(yyy)

JacobianOfSpatialJacobian

add
∂

∂µµµ
∂TTT
∂xxx

(x̃xx) =
∂

∂µµµ
∂

∂xxx
(TTT0(x̃xx)+TTT1(x̃xx)− x̃xx) =

∂
∂µµµ

∂
∂xxx

TTT1(x̃xx)

compose
∂

∂µµµ
∂TTT
∂xxx

(x̃xx) =
∂

∂µµµ
∂

∂xxx
(TTT1(TTT0(xxx))) =

∂
∂µµµ

∂
∂xxx

TTT1(yyy) ·
∂

∂xxx
TTT0(x̃xx)

SpatialHessian

add
∂2TTT

∂xi∂x j
(x̃xx) =

∂2

∂xi∂x j
(TTT0(x̃xx)+TTT1(x̃xx)− x̃xx) =

∂2

∂xi∂x j
TTT0(x̃xx)+

∂2

∂xi∂x j
TTT1(x̃xx)

compose
∂2Tk

∂xi∂x j
(x̃xx) =

(
∂T1,k

∂xxx
(yyy)

)† ∂2TTT0

∂xi∂x j
(x̃xx)+

(
∂TTT0

∂xi
(x̃xx)

)† ∂2T1,k

∂xxx∂xxx†(yyy)
∂TTT0

∂x j
(x̃xx)

JacobianOfSpatialHessian

add
∂

∂µµµ
∂2TTT

∂xi∂x j
(x̃xx) =

∂
∂µµµ

∂2

∂xi∂x j
(TTT0(x̃xx)+TTT1(x̃xx)− x̃xx) =

∂
∂µµµ

∂2

∂xi∂x j
TTT1(x̃xx)

compose
∂

∂µµµ
∂2Tk

∂xi∂x j
(x̃xx) =

∂2T1,k

∂µµµ∂xxx†(yyy)
∂2TTT0

∂xi∂x j
(x̃xx)+

(
∂TTT0

∂xi
(x̃xx)

)†(∂
∂µµµ

∂2T1,k

∂xxx∂xxx†(yyy)

)
∂TTT0

∂x j
(x̃xx)

These derivatives are implemented in theitk::AdvancedCombinationTransform class.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1BSplineKernelFunction2.html
http://www.itk.org/Doxygen/html/classitk_1_1CombinationTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AdvancedCombinationTransform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

9

6 Bending energy penalty term

To showcase the use of these spatial derivatives we implemented the bending energy penalty term, which
was defined as:

PBE(µµµ) =
1
P ∑̃

xxxi

2

∑
k,l ,m=1

(
∂2Tk

∂xl ∂xm
(x̃xxi)

)2

. (27)

We constructed an itk::TransformBendingEnergyPenaltyTerm which (finally) inherits from the
itk::ImageToImageMetric . TheGetValue() -method is implemented like:

if (!transform->GetHasNonZeroSpatialHessian()) return 0;

SpatialHessianType spatialHessian;
for all samples

this->GetTransform()->GetSpatialHessian(sample, spat ialHessian);
for all k, l, m

measure += spatialHessian[k][l][m]ˆ2;
end

end
measure /= numberOfSamples;

For theGetValueAndDerivative() we have:

∂
∂µµµ
PBE(µµµ) =

1
P ∑̃

xxxi

2

∑
k,l ,m=1

2
∂2Tk

∂xl ∂xm
(x̃xxi)

∂
∂µµµ

∂2Tk

∂xl ∂xm
(x̃xxi), (28)

which is implemented like:

if (!transform->GetHasNonZeroSpatialHessian()
&& !transform->GetHasNonZeroJacobianOfSpatialHessian ())
value = 0; derivative = 0; return;

SpatialHessianType spatialHessian;
JacobianOfSpatialHessianType jacobianOfSpatialHessia n;
for all samples

this->GetTransform()->GetSpatialHessian(sample, spat ialHessian);
this->GetTransform()->GetJacobianOfSpatialHessian(s ample,

jacobianOfSpatialHessian, nonZeroJacobianIndices);
for all nonZeroJacobianIndices, k, l, m

derivative[nonZeroJacobianIndices[mu]] += 2.0
* spatialHessian[k][i][j]
* jacobianOfSpatialHessian[mu][k][i][j];

end
end
derivative /= numberOfSamples;

It must be noted that theitk::TransformBendingEnergyPenaltyTerm class inherits from a derived
version of the itk::ImageToImageMetric class, which adds support for image samplers. The image

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1TransformBendingEnergyPenaltyTerm.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformBendingEnergyPenaltyTerm.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

10

sampling framework is described in another Insight Journal paper, see[7]. As such the compilation of this
class will only succeed in combination with these ‘enhanced’ classes.

7 Discussion and Conclusion

This document describes the use and implementation of spatial derivatives of coordinate transformations in
the ITK. In addition, the derivatives to the transformation parameters of these spatial derivatives are given,
required for gradient descent like optimisation routines. The latter are implemented in a sparse manner.
We created new versions of the identity, rigid, affine and B-spline transformation. Also, combinations of
transformations benefit from the proposed enhancements.

The spatial derivatives were subsequently exploited by the bending energy penalty term. Their usage is,
however, not limited to that penalty term, and many more penalty terms can be implemented using the new
functionality.

References

[1] S. Klein, J. P. W. Pluim, M. Staring, and M. A. Viergever. Adaptive stochastic gradient descent optimi-
sation for image registration.International Journal of Computer Vision, 81(3):227–239, 2009.1

[2] S. Klein, M. Staring, K. Murphy, M.A. Viergever, and J.P.W. Pluim. elastix: a toolbox for intensity-
based medical image registration.IEEE Transactions on Medical Imaging, 29(1):196 – 205, 2010.1,
1

[3] S. Klein, M. Staring, and J. P. W. Pluim. Evaluation of optimization methods for nonrigid medical
image registration using mutual information and B-splines.IEEE Transactions on Image Processing,
16(12):2879 – 2890, December 2007.1

[4] Stefan Klein and Marius Staring. Combining transforms in ITK.Insight Journal, 2006.
http://hdl.handle.net/1926/197 . 2, 5, 5

[5] T. Rohlfing, C. R. Maurer Jr., D. A Bluemke, and M. A. Jacobs. Volume-preserving nonrigid regis-
tration of MR breast images using free-form deformation with an incompressibility constraint. IEEE
Transactions on Medical Imaging, 22(6):730 – 741, 2003.1

[6] D. Rueckert, L. I. Sonoda, and C. Hayeset al. Nonrigid registration using free-form deformations:
Application to breast MR images.IEEE Transactions on Medical Imaging, 18(8):712 – 721, 1999.1

[7] Marius Staring and Stefan Klein. An image sampling framework for the ITK. Insight Journal, 2010.
http://hdl.handle.net/10380/3190 . 6

Latest version available at theInsight Journal[http://hdl.handle.net/10380/1338]
Distributed underCreative Commons Attribution License

http://hdl.handle.net/1926/197
http://hdl.handle.net/10380/3190
http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Support for penalty terms in the ITK
	Affine transformation
	B-spline transformation
	Combining transformations
	Bending energy penalty term
	Discussion and Conclusion

