
Cuberille Implicit Surface Polygonization for ITK
Release 1.00

Dan Mueller1

July 20, 2010
1Philips Healthcare, Best, Netherlands

Abstract

This article describes an ITK implementation of the “cuberille” method for poloygonization of implicit
surfaces. The method operates by dividing the surface into a number of small cubes called cuberilles.
Each cuberille is centered at a pixel lying on the iso-surface and then quadrilaterals are generated for each
face. The original approach is improved by projecting the vertices of each cuberille onto the implicit
surface, smoothing the typical block-like resultant mesh. Source code and examples are provided to
demonstrate the method.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Description 3

3 Implementation 4

4 Examples 6

5 Conclusion 6

http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

2

1 Introduction

The “cuberille” model was proposed over 30 years ago [2], and subsequently utilized for polygonization
over 20 years ago [1]. The original method described three sets of orthogonal planes which divided the
volume of an implicit function into equal cubes (voxels). The surface was then represented as the set of
directed quadrilateral faces of the cubes lying on the iso-surface. A voxel was considered to lie on the iso-
surface if the implicit function value was greater than or equal to the isovalue, and the voxel had one more
neighbours less than the isovalue. The concept is easily extended to support non-uniform spacing using
cuboids.

The cuberille method has a number of advantages, many deriving from its shear simplicity. First and fore-
most the method is simple to implement. A basic summary of the algorithm is as follows: step over all
pixels, for each pixel determine if it lies on the iso-surface, center a cube on the pixel, create quadrilateral
faces aligned with the cube (taking care of neighbouring pixels also on the surface). The second advantage
is that the method preserves topology with the resultant surface directly representing the underlying discrete
implicit function. Take for example an implicit function consisting of a single non-zero pixel. Using the
cuberille algorithm, this function will be represented as a single cube with six faces. The resultant poly-
gonization is similar to dual contouring methods which produce vertices at pixel corners rather than pixel
centers.

Of course the method also has a number of drawbacks, the most notable of which is the block-like nature
of the resultant mesh. This issue can be overcome by projecting each vertex onto the iso-surface using
a gradient descent method1. Some may also perceive the large number of vertices/cells as a disadvantage,
however this can be alleviated using a decimation post-processing step. (NOTE: The current implementation
does not support itk::QEMesh . This issue is being worked on.)

1See http://www2.imm.dtu.dk/ ˜jab/gallery/polygonization.html .

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www2.imm.dtu.dk/~jab/gallery/polygonization.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

3

2 Description

The main algorithm for generating quadrilateral faces on the cuberilles is as follows:

1 // Iterate image
2 foreach pixel in input {
3 // Determine if the current pixel is suitable
4 if pixel value < isovalue
5 continue
6 // Compute which faces (if any) have quads
7 foreach face in cube {
8 faceHasQuad = neighbouring pixel value < isovalue
9 if faceHasQuad {

10 vertexHasQuad = get vertices from face
11 }
12 }
13 // Process each face
14 if at least one face {
15 // Create vertices
16 foreach vertex in vertexHasQuad {
17 if vertex does not already exist {
18 add vertex
19 }
20 }
21 // Create faces
22 foreach face in faceHasQuad {
23 add face
24 }
25 }
26 }

For each pixel the algorithm needs to store two boolean arrays: the first array flags which faces have quadri-
lateral cells (faceHasQuad), and the second array flags which vertices are in use by the cells (vertexHasQuad).
Figure 1 depicts the numbering scheme used to index these arrays.

The main drawback of the original cuberille method is the block-like nature of the resultant mesh. This
can be overcome by projecting each vertex onto the iso-surface. The following pseudocode describes the
gradient descent method used to project each vertex:

1 step = maximum spacing * 0.25
2 while (true) {
3 // Compute normal vector
4 normal = compute normal vector at vertex
5
6 // Compute whether vertex is close enough to iso-surface value
7 if (abs(pixel value - isovalue) < threshold) break
8
9 // Step along the normal towards the iso-surface value

10 sign = (pixel value < isovalue) ? +1.0 : -1.0
11 vertex += (normal * sign * step)
12 step *= relaxation factor
13 if (step < threshold) break
14 }

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

4

Figure 1: Depiction of numbering scheme used by cuberille algorithm.

3 Implementation

The cuberille filter itk::CuberilleImageToMeshFilter is a subclass of itk::ImageToMeshFilter . The filter
has two required parameters and six optional parameters. The two required parameters are:

Input specifies the input image containing the implicit surface for polygonization.

IsoSurfaceValue specifies the value of the iso-surface for which to generate the mesh. Pixels equal to or
less than this value are considered to lie on the surface or inside the resultant mesh.

The optional parameters are divided into two groups. The first group consists of two boolean flags which
turn on or off different parts of the algorithm. Figure 2 depicts resultant meshes generated using these
parameters.

GenerateTriangleFaces specifies whether triangle or quadrilateral faces should be generated. The default
is to generate triangle faces.

ProjectVerticesToIsoSurface specifies whether the vertices should be projected onto the iso-surface. If
the projection is disabled, the resultant mesh exhibits the traditional blocky features. Projection takes
roughly half of the algorithm time. The default is to project the vertices.

The remaining four optional parameters are all related to the vertex projection step. The default values seem
to work well for a variety of inputs, so typical usage will not require these parameters to be set.

ProjectVertexSurfaceDistanceThreshold specifies the threshold for the “distance” from iso-surface dur-
ing vertex projection. Note that the distance is actually measured in pixel value units (not space).
The smaller this value, the closer the vertices will be to the iso-surface. Small values result in longer
convergence time (i.e. slower). Values are clamped to the range [0.0, max pixel value]. The default
value is 0.5.

ProjectVertexStepLength specifies the threshold for the step length during vertex projection. The smaller
this value, the more likely the vertices will end up closer to the surface. Small values cause the

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

5

(a) GenerateTriangleFaces=false,
ProjectVerticesToIsoSurface=false

(b) GenerateTriangleFaces=false,
ProjectVerticesToIsoSurface=true

(c) GenerateTriangleFaces=true,
ProjectVerticesToIsoSurface=true

Figure 2: Neghip data set (http://www.volvis.org).

projection to take longer to converge. Values are clamped to the range [0.0, large]. The default value
is max spacing × 0.25 (expressed in physical space).

ProjectVertexStepLengthRelaxationFactor specifies the step length relaxation factor during vertex pro-
jection. The step length is multiplied by this factor each iteration to allow convergence. Values are
clamped to the range [0.0, 1.0]. The default value is 0.95.

ProjectVertexMaximumNumberOfSteps specifies the maximum number of steps used during vertex pro-
jection. The default value is 50.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www.volvis.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

6

Dataset Size Vertices Cells Time (s)
Fuel 64 64 64 5,281 10,568 0.08
Neghip 64 64 64 15,146 30,272 0.20
Engine 258 258 112 319,918 640,112 3.37
Bunny 512 512 361 1,022,508 2,045,068 24.09

Table 1: Results for various datasets. Timings performed on Intel Core 2 Duo, 2 × 2.53GHz, 3.45 GB
RAM, Windows XP SP3.

4 Examples

The cuberille algorithm is quite easy to use:

1 // Typedefs
2 const unsigned int Dimension = 3;
3 typedef unsigned char PixelType;
4 typedef itk::Image < PixelType , Dimension > ImageType;
5 typedef itk::Mesh < PixelType , Dimension > MeshType;
6 typedef itk:: LinearInterpolateImageFunction < ImageType > InterpolatorType;
7 typedef itk:: CuberilleImageToMeshFilter < ImageType , MeshType , InterpolatorType > CuberilleType;
8
9 // Create output mesh

10 MeshType :: Pointer outputMesh = NULL;
11
12 // Create cuberille mesh filter
13 CuberilleType :: Pointer cuberille = CuberilleType ::New ();
14 cuberille ->SetInput(input);
15 cuberille -> SetIsoSurfaceValue(IsoSurfaceValue);
16 cuberille ->Update ();
17 outputMesh = cuberille ->GetOutput ();

As shown in Figure 3, the use of a B-Spline interpolator can improve the resultant mesh quality (though this
is at the cost of performance):

1 typedef itk:: BSplineInterpolateImageFunction < ImageType , float, float > InterpolatorType;
2 InterpolatorType :: Pointer interpolator = InterpolatorType ::New ();
3 interpolator ->SetSplineOrder(3);
4 cuberille ->SetInterpolator(interpolator);

A number of figures have been included to show the output of the filter, see Figure 4, Figure 5, and Figure 6.
Table 1 lists some simple results concerning the algorithm.

5 Conclusion

This article described the implementation of the cuberille polygonization algorithm for ITK. The algo-
rithm is simple, relatively fast, and produces visually appealing results (when vertex projection is enabled).
Currently the algorithm does not support itk::QEMesh , however, with the help of the Insight developers,
hopefully this issue will be resolved shortly.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

References 7

(a) Linear interpolator (3.41 s) (b) B-Spline interpolator (10.95 s)

Figure 3: Comparison of linear and B-Spline interpolators. Timings performed on Intel Core 2 Duo, 2 ×
2.53GHz, 3.45 GB RAM, Windows XP SP3.

References

[1] D. Gordon and J. K. Udupa. Fast surface tracking in three-dimensional binary images. Computer Vision,
Graphics and Image Processing, 45:196–214, 1989. 1

[2] G. Herman and H. Liu. Three-dimensional display of human organs from computed tomograms. Com-
puter Graphics and Images Processing, 9:1–21, 1979. 1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

References 8

(a) Cuberille (projection off) (b) Cuberille (projection on) (c) (Binary) Marching Cubes

Figure 4: Fuel data set (http://www.volvis.org).

(a) Cuberille (projection off) (b) Cuberille (projection on) (c) (Binary) Marching Cubes

(d) Cuberille (projection off) (e) Cuberille (projection on) (f) (Binary) Marching Cubes

Figure 5: Engine data set (http://www.volvis.org).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://www.volvis.org
http://www.volvis.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

References 9

(a) Cuberille (projection off) (b) Cuberille (projection on) (c) (Binary) Marching Cubes

(d) Cuberille (projection off) (e) Cuberille (projection on) (f) (Binary) Marching Cubes

Figure 6: Bunny data set (http://graphics.stanford.edu/data/voldata/).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3186]
Distributed under Creative Commons Attribution License

http://graphics.stanford.edu/data/voldata/
http://www.insight-journal.org
http://hdl.handle.net/10380/3186
http://creativecommons.org/licenses/by/3.0/us/

	1 Introduction
	2 Description
	3 Implementation
	4 Examples
	5 Conclusion

