
Gaussian Interpolation

Paul A. Yushkevich, Nicholas J. Tustison, and James C. Gee

November 25, 2009

Penn Image Computing and Science Laboratory
University of Pennsylvania

Abstract

In this submission, we offer the itk::GaussianInterpolationImageFunction which adds to the
growing collection of existing interpolation algorithms in ITK for resampling scalar images such as
the itk::LinearInterpolateImageFunction, itk::BSplineInterpolateImageFunction, and
itk::WindowedSincInterpolateImageFunction. We provide a brief discussion of the theory behind
the submission and the algorithmic implementation.

1 Introduction

In many ways, the Gaussian is an optimal filter for resampling images. Although the sinc interpolation
is theoretically optimal, most images violate the associated periodicity assumption, which leads to ring-
ing. Further discussion of such issues can be found in various image/signal processing textbooks and
online reviews. In this submission, we provide the itk::GaussianInterpolationImageFunction
which is derived from the itk::InterpolationImageFunction and functions similarly to the
itk::LinearInterpolateImageFunction, itk::BSplineInterpolateImageFunction, and
itk::WindowedSincInterpolateImageFunction.

Viewing a given scalar image as a piecewise constant intensity function, one can calculate the interpolated
intensity value at a given sample point using Gaussian interpolation. This is best illustrated with the 1-D
example given in Figure 1. Suppose we wish to calculate the interpolated value at point s where the image
intensities are represented by the piecewise function F(x), the values of which are weighted by the Gaussian
function centered at s with a user-specified σ value and cutoff distance. We can calculate this with the
following integral:

I(s) =
1√

2πσ2

Z t6

t1
F(x)exp

(
−(x− s)2

2σ2

)
dx

=
5

∑
i=1

1√
2πσ2

Ic
i

Z ti+1

ti
exp

(
−(x− s)2

2σ2

)
dx

=
5

∑
i=1

Ic
i (erf(ti+1)− erf(ti)) (1)

where Ic
i is the constant intensity value over the interval [ti, ti+1) and erf is the error function. This is easily

extended to handle N-dimensional images.

2

Figure 1: 1-D example of the proposed Gaussian interpolation approach. Image intensity values are rep-
resented as a piecewise constant intensity function (in green) with a normalized Gaussian centered at the
sample point, s.

2 Implementation

Since the proposed class was derived from the itk::InterpolateImageFunction, it is meant to have the
same basic interface as the other interpolate image functions. However, there are two parameters that the
user can specify, specifically Sigma and Alpha. Sigma defines the shape of the Gaussian in each image
dimension whereas Alpha determines the cutoff as a multiplicative factor of Sigma. These parameters can
be set using

>gaussianInterpolator->SetParameters(sigma, alpha);

where sigma is an array of RealType and alpha is of RealType. These parameters can also be set individ-
ually through the usual macro methods of

>gaussianInterpolator->SetSigma(sigma);

and

>gaussianInterpolator->SetAlpha(alpha);

We have included the file itkGaussianInterpolateImageFunctionTest.cxx where one can explore
three sampling routines including the one proposed in this submission. Usage is as follows:

Usage: ./itkGaussianInterpolateImageFunctionTest imageDimension inputImage
outputImage MxNxO [size=1,spacing=0] [interpolation type]
Interpolation type:

0. linear (default)
1. nearest neighbor
2. gaussian [sigma] [alpha]

Tests are provided in CMakeLists.txt which were used to produce the examples in Figure 2. In most

3

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Original axial brain slice of size 256× 256 to be resampled to size 100× 100. (b) Nearest
neighbor interpolation. (c) Linear interpolation. (d) Gaussian interpolation (σ = 1.0× 1.0,α = 3.0). (e)
Gaussian interpolation (σ = 5.0×5.0,α = 3.0). (f) Gaussian interpolation (σ = 1.0×5.0,α = 3.0).

4

applications a very small sigma (0.8 or so) would probably be sufficient. Otherwise, applying the Gaussian
filter to the input image and then sampling it with linear interpolation is probably just as good. And also the
large sigma makes the filter pretty slow.

