

Automatic Branch Decomposition for Tubular
Structures

Release 0.1

Guanglei Xiong1, Lei Xing2 and Charles Taylor3

Apr 20, 2009

1
Biomedical Informatics Program, Stanford University

2
Department of Radiation Oncology, Stanford University

3
Department of Bioengineering, Stanford University

Abstract

 Branches of tubular structures (vasculature, trachea, neuron, etc.) in medical images are critical for the topology of these

structures. In many applications, It is very helpful to be able to decompose tubular structures and identify every individual

branch. For example, quantification of geometric vascular features, registration of trachea movement due to respiration, tracing of

neuron path. However, manual decomposition can be tedious, time-consuming, and subject to operator bias. In this paper, we

propose a novel method to decompose tubular structures automatically and describe how to implement it in ITK framework. The

input is a 2D/3D binary image that can be obtained from any segmentation techniques, as well as the junctions, which can be

generated automatically from our previously contributed ITK class: itk::JunctionDetectionFilter. The output will be

branches with their labels and their connection. There are only two parameters which need to be set by the user. We provide here

the implementation as a ITK class: itk::BranchDecompositionFilter.

Contents

1 Introduction 2

2 Design 2

3 Implementation 3

4 Usage and Examples 4

5 Software Requirements 7

 2

1 Introduction

Branches of tubular structures in medical images are critical for their topology. These structures include

vasculature, trachea, neuron, etc. Decomposition of them and identification of every individual branch is

helpful in many applications. For example, the branches of vessels can be used to define vascular trees

and quantify features of vessel segments, such as length and diameter. Tracking of branches in trachea

could enable more robust registration of movement due to respiration. Branch enables the tracing of the

paths of neurons that can be useful to study their growth. However, manual identification of branches can

be tedious, time-consuming, subject to operator bias, and intractable when many are present. To our

knowledge, there is no free and open-source software that are readily available for this task. In this paper,

we propose a novel method to decompose tubular structures them automatically and construct branch

connections based on a list of junctions. The junctions can be generated automatically using our

previously contribution [1]. We describe how to implement it in ITK framework [2]. In the end, we

introduce how to use the implementation and demonstrate our results.

2 Design

Decomposition of tubular structures are not easy for several reasons. First, the patterns of branches in

tubular structures can be very diverse. They can be straight, curved, or even loopy. Second, the branches

are connected to each other through junctions, which have topologically different from the former.

Furthermore, it is usually necessary to identify branches of different sizes simultaneously. We designed

our method to take these challenges into account.

The basic idea of our approach is simple. We use user-provided junctions shown as dark color in Fig. 1 to

split the tubular structure into individual branches. we mark voxels within all the junctions. Then, we treat

each connected component as individual branch for the rest of voxels in the image. Clearly, if the

provided junctions are appropriate, the branch should be connected to one or two junctions. For example

in Fig. 1, branches 1 and 2 connects only one junction: J1. Similarly, branches 4 and 5 has one junction J2

as their neighbor. Branch 3 connects to both J1 and J2. As you can imagine, branch decomposition will be

incomplete if the user does not provide junction J2. In this case, the branches 3, 4, and 5 are considered as

one single "branch". In contrast, branch decomposition will be over-complete if the user provides another

junction J3, e.g. in the middle of branch 3, to divide this branch. Notice that our current method labels

voxels to be within either junction or branches. That is to say, we do not divide junctions based on their

connected branches.

We further develop the basic idea by describing the details of our method that are designed to better

handle the difficulties mentioned before. First, the user provides a input binary image and a list of

junctions with their centers
jc

c and sizes
jc

r . We define
jin c

r r and
cout j

r r , where   are user-

defined parameters. The variable
in

r is used as the distance to
jc

c , within which the voxels are considered

as junction voxels. We use the geodesic distance as opposed to the Euclidean distance because the former

is measured within the tubular structure. Second, for each junction, we label voxels between
in

r and
out

r

away from the center as branch voxels, one branch label for each connected components. For example in

Fig. 1, The junction J1 will lead to three labels, similar to junction J2 but with three different labels. Then,

the labels for branch voxels are propagate to their neighboring unlabeled voxels until all voxels have been

labeled. Clearly, we will have to merge the labels if one voxel has a neighboring voxel with a different

branch label. For instance, this issue will happen in branch 3 in Fig. 1. The branch label, which has the

 3

number of voxels fewer than the minimal number of voxels
min

n , with its original junction label. Finally,

we will resort the branch labels to be consecutive and find their connected junction labels.

Figure 1 The basic idea of our branch decomposition method is to

use the junctions (J1 and J2) to split branches (1, 2, 3, 4, and 5).

The flowchart of our method is summarized in Fig. 2.

Figure 2 The flowchart of our branch decomposition method.

3 Implementation

We implemented the method as a ITK class: itk::BranchDecompositionFilter, which is

subclass of itk::ImageToImageFilter. It is templated by the input image type and controlled by

four functions:

 [Set/Get]InnerRadius: define  .

 [Set/Get]InnerRadius: define  .

 [Set/Get]MinNumberOfPixel: define
min

n .

 SetJCLabelMap: input junction information.

The junction information is provided by a std::map: JCLabelMapType, defined as:

 typedef std::pair< IndexType, float > JCLabelPairType;

 typedef std::map< long, JCLabelPairType > JCLabelMapType;

Input a binary

image and

junctions.

For each junction, label

voxels within it. Then,

label voxels within
in

r

and
out

r as junctions.

Propagate junction labels

to unlabeled voxels until

all voxels are labeled.

Merge labels as necessary.

Output branches and

their connections to

junctions.

 4

The input image should be a binary image with zero background and nonzero foreground. The output

image is an image with branches and junctions marked by their labels. The information of branches and

their connections to junctions can also be queried by a std::map: BRJCConnectMapType, defined as:

 typedef std::set< long > BRJCSetType;

 typedef std::map< long, BRJCSetType > BRJCConnectMapType;

Each element in the map is a branch with the branch label as its key and the set of connected junctions.

The core of our method is in the function of GenerateData().

4 Usage and Examples

It is very easy to use the class. It behaves like a common filter which has one input and one output.

First, a 3D image of the Circle of Willis with identified branches (47 in total) is shown in Fig. 3.

The input junctions (slightly modified from the output of Ref. [1]) are

jcLabel jcIndex[0] jcIndex[1] jcIndex[2] jcRadius

1 218 129 193 1.1225

2 196 111 213 1.4156

3 140 149 260 0.6708

4 269 159 264 0.6708

5 148 50 277 0.8485

6 190 53 279 0.9950

7 213 38 283 0.7348

8 225 39 285 0.5196

9 292 61 285 0.9000

10 242 80 285 1.1225

11 214 120 288 1.2416

12 237 98 286 0.6708

13 177 65 291 1.1225

14 122 27 292 0.6708

15 193 110 299 0.6708

16 333 66 304 0.9000

17 343 66 315 0.6708

18 103 43 334 0.5843

19 73 124 343 0.8485

20 97 33 348 0.5843

21 223 29 349 0.6000

22 66 108 352 2.9699

23 22 200 361 0.5196

24 232 14 362 0.6000

25 82 191 365 0.5843

The code snippet is

DecomposerType::Pointer decomposer = DecomposerType::New();

 5

decomposer->SetInnerRadius(2.5);
decomposer->SetOuterRadius(3.0);
decomposer->SetMinNumberOfPixel(16);
decomposer->SetJCLabelMap(&jcLabelMap);
decomposer->SetInput(inputImage);
decomposer->Update();

Figure 3 The Circle of Willis with its junctions (in blue) and branches (other than blue).

Second, a 3D image of trachea with identified branches (20 in total) is shown in Fig. 4.

The input junction file can be downloaded online in the Data section.

The branches were identified using the same code and parameters as in the Circle of Willis.

 6

Figure 4 The trachea with its junctions (in blue) and branches (other than blue).

Finally, we tested the method on a 2D neuron image as seen in Fig. 5.

Total number of identified branches: 96.

The branches were identified using the same code (in 2D) and parameters as previous.

Figure 5 The neuron with its junctions (in blue) and branches (other than blue).

 7

5 Software Requirements

This paper has described a method of automatic branch decomposition. The method requires a minimal

number of parameters and works both in 2D and 3D. The implementation is ready to be used within the

ITK framework. In the future work, we hope to speed up the method by parallelism. In addition, the

junction could be divided further by assignment of its voxels to neighboring identified branches. For

suggestions or bugs, feel free to contact us
1
.

6 Software Requirements

You need to have the following software installed:

• Insight Toolkit 3.8.0

• CMake 2.4

Acknowledgement

We would like to thank Nan Xiao for providing the segmentation of the Circle of Willis. Guanglei Xiong

was supported by a Stanford Graduate Fellowship.

Reference

[1] G. Xiong, L. Xing, and C. Taylor. Automatic Junction Detection for Tubular Structures. The Insight

Journal, http://www.insight-journal.org/browse/publication/324, Jan-Jun, 2009.

[2] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,

http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

1
 Corresponding author: Guanglei Xiong: guangleixiong at gmail.com

http://www.insight-journal.org/browse/publication/324

