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Abstract

Ultrasound has become a very important modality in image-guided therapy. At present, however, the
collection, synchronization and transfer of ultrasonic images are more cumbersome than necessary. This
paper presents a reusable solution to these problems. We propose a software package called Synchro-
Grab, which allows the collection of interventional ultrasound images as well as their synchronization
with a stream of pose measurements. The software includes support for an open-interface ultrasound
system, namely the Sonix RP, from Ultrasonix (Vancouver, Canada). Using an open-interface system
like the Sonix RP allows customization of the imaging process and the capture of the ultrasound images
directly from memory without the need for a frame-grabbing card. Pose measurement is currently per-
formed with an Optotrak Certus by Northern Digital (Waterloo, Canada). However, extensibility was a
primary goal in the design of this software, so the support of new devices can be achieved simply by sub-
classing the relevant base class. SynchroGrab also performs reconstruction of 3D ultrasound volumes
from synchronized data streams. Moreover, the recorded images, volumes and tracking information are
available for visualization or further processing either directly from the file system or from a network
connection compliant with the OpenIGTLink protocol, which is supported by Slicer 3.
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1 Introduction

Over the years, ultrasound imaging has become a very important modality in the field of image-guided
therapy (IGT). Its advantages are numerous and include very high availability of the equipment, innocuity
for the patient and the operator, cost efficiency, and interactivity. However, ultrasound images are generally
noisy and provide only limited information about a patient’s anatomy. Thus, during image-guided therapies,
ultrasound is typically used in combination with high-quality images acquired with computed tomography
or magnetic resonance imaging prior to the intervention.

In addition to multi-modal imaging, IGT often relies on position sensors to track the position and orientation
of different objects during interventions. Surgical instruments can hence be located in 3D, and displayed
in the context of pre-operative images. Moreover, if calibration procedures are performed on a tracked
ultrasound probe, then each pixel of the ultrasound images can be associated with a position in 3D space,
and a 3D volume can be reconstructed from a sequence of 2D images.

For these technologies to be applied as part of an IGT procedure, the interventional ultrasound images,
previously acquired images, and pose measurements must be imported into a common workspace. Once
this information is regrouped, image visualization, analysis, registration and image fusion become possible.
Unfortunately, commercial ultrasound systems do not generally provide such a common workspace, and the
data transfer mechanisms that they do provide are usually not compatible with the real-time requirements of
IGT.

Some surgical navigation systems tackle this problem by providing large, monolithic applications that per-
form all functions within a single integrated package. IGSonix (BrainLAB AG, Heimstetten, Germany),
SonoNav (Louisville, CO, U.S.A.), and CustusX [6] are good examples of this practice. However, from
a software engineering perspective, it would much more interesting to split some of these features into
reusable components. On the other hand, open-source libraries such as IGSTK [4] offers some reusable
components for IGT, but do not necessarily integrate well with existing systems.

In 2004, Boctor et al. [2] discussed the development of a module for Slicer 2 [7]. The module was intended
to reconstruct volumes from tracked ultrasound images, and to make them available in Slicer 2 for further
visualization and/or processing. This was a promising approach because Slicer is an open-source application
that already offers a modular framework for advanced visualization and medical image processing. However,
Slicer recently underwent a large re-engineering effort and the ultrasound module, which was intimately tied
to the original Slicer 2 architecture, is no longer available for use.
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Figure 1: Information flow in SynchroGrab.

The recent proposal of OpenIGTLink [1], which allows the exchange of images and tracking information
using a standardized network protocol, opens the door to a more flexible coupling between reusable software
components in IGT. Moreover, with OpenIGTLink it is simple for different computers to manage different
parts of the real-time image acquisition and interventional navigation. The former needs to comply with
real-time constraints but typically does not require a large amount of computational resources, whereas the
latter requires more computational resources and advanced computer graphics hardware but is more flexible
with respect to timing constraints.

Another recent development is that open-interface ultrasound systems have become common. These allow
more control over the types of ultrasound images collected and also offer direct access to the digital images
rather than relying on digitization of an analog video stream.

In this context, we propose a new software package called SynchroGrab. This application fulfills the fol-
lowing requirements:

• Continuous acquisition of ultrasound images using an open-interface ultrasound system;
• Continuous acquisition of tracking information using a pose measurement system;
• Explicit synchronization of the two acquisition threads;
• Reconstruction of 3D ultrasound volumes using the synchronized data; and
• Transfer of the raw ultrasound images, the 3D volumes and the probe tracking information to an

OpenIGTLink-compliant system.

The architecture of the proposed software is presented in the next section. Some of its components will be
described in greater depth since they are likely to be reused in other applications. Section 3 then presents
some experimental results obtained using SynchroGrab. These results demonstrate the most important fea-
tures of the proposed software. Finally, future work and possible improvements to the architecture is dis-
cussed in Section 4.

2 SynchroGrab : Software Design

SynchroGrab was designed with several objectives in mind. The most important was to fulfill the require-
ments described in Section 1. However, the development of reusable software components was also judged
to be very desirable. To achieve these objectives, the application was split into several logical modules with
well-defined responsibilities. These modules, as well as their relationships, are presented in Figure 1.
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Figure 2: Class diagram of the 3D tracking subsystem.

The actual implementation of these modules corresponds to one or several C++ classes. Whenever possible,
these classes were developed by subclassing the relevant VTK classes. This design decision facilitated the
reutilization of existing VTK classes in SynchroGrab, and will also simplify the reutilization of our classes
in other VTK-based applications.

2.1 3D Tracking

Figure 2 illustrates the most important C++ classes of our infrastructure, as well as their relationships. The
base class vtkTracker is an open-source class from Atamai Inc. (London, ON, Canada) and provides
an abstraction of the physical devices that generate rigid body tracking information. Two derived classes
that represent concrete implementations of vtkTracker are vtkNDITracker and vtkNDICertusTracker.
The former supports the AURORA and the POLARIS measurement systems from Northern Digital Inc.
(Waterloo, ON, Canada), since both devices support a common API, while the latter supports the NDI
Optotrak Certus, since the Certus has its own API. Other tracking systems can also be supported if concrete
implementations of vtkTracker are written for them.

Once the correct concrete class is instantiated and communication with the tracking device is established via
the vtkTracker::StartTracking() method, the objects belonging to the helper class vtkTrackerTool
will provide information about the tools currently tracked. The tool poses, status information, and data
timestamps are stored in a circular buffer to provide flexibility in synchronizing the poses with ultrasound
images.

2.2 Ultrasound Image Acquisition

Most commercial ultrasound systems do not allow direct digital access to the captured images during the
acquisition process. To alleviate this problem, most IGT systems support real-time ultrasound image acquisi-
tion by connecting a frame-grabbing card to an analog video output of the ultrasound system. This approach
has many drawbacks. First, it is not possible to gain access to the raw RF signal or to pre-scan converted
images. Second, a significant delay is created by the analog to digital and digital to analog conversions that

Latest version available at the Insight Journal [ http://hdl.handle.net/1926/137]
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must be performed. Finally, image quality is likely to be decreased by such conversions.

An appealing alternative is the use of an ultrasound system that offers an open interface for data acquisition.
By using the API of one of those systems, access can be gained to the ultrasound images directly from
the system’s memory without the need for any prior conversions. It also becomes possible to standardize
the imaging parameters since those parameters can be established using the same API. The system chosen
for this study is the Sonix RP from Ultrasonix (Vancouver, Canada) because it is the most widely used
open-architecture ultrasound system. Other systems, such as Siemens’ Axius Direct URI or Terason’s Echo
Ultrasound, also offer access to RF data and could be integrated in the future.

It was decided that we would start with the vtkVideoSource that is part of the VTK distribution, and provide
support for the Sonix RP API by creating a derived class which we have called the vtkSonixVideoSource.
By doing so, we have made it possible to swap out our class with any of the other concrete implementations
of vtkVideoSource, which include the vtkWin32VideoSource class for Video-for-Windows supported
frame grabbers, and the vtkMILVideoSource class for Matrox (Montreal, Canada) frame grabbers. The
ability to swap out the video source is very important, since it will not restrict our open source software
package to the proprietary Sonix RP interface.

When the vtkSonixVideoSource class is used, the internet address of the Sonix RP system to which
it should connect (the default being the local computer) can be set. It is also possible to customize the
requested image type with the methods SetImagingMode() and SetAcquisitionDataType(). Hence,
one can request post-scan converted B-Mode images, pre-scan converted B-Mode images and even raw RF
data. The following code excerpt illustrates how the class is typically used.

vtkSonixVideoSource *sonixGrabber = vtkSonixVideoSource::New();
sonixGrabber->SetSonixIP("127.0.0.1");
sonixGrabber->SetImagingMode(BMode);
sonixGrabber->SetAcquisitionDataType(udtBPost);
sonixGrabber->Record();
sonixGrabber->Stop();
sonixGrabber->Rewind();
// Perform image processing on the first image of the buffer here
sonixGrabber->Seek(1)
// Perform image processing on the second image of the buffer
// ...
sonixGrabber->ReleaseSystemResources();
sonixGrabber->Delete();

The method SetImagingMode() takes an integer as input but a C++ enum type enables the user to type
clearer text values which are: BMode, MMode, ColourMode, PwMode, RfMode, F4DMode, ElastoMode.
The method SetAcquisitionDataType() also takes an integer as input and also has an associated enum
type for increased code readability. The supported acquisition data type include: udtBPost, udtMPost,
udtPWSpectrum, udtElastoOverlay, udtBPre, udtMPre, udtElastoPre, udtColorRF, udtPWRF, udtRF,
udtScreen, udtBPost32, udtColorPost, and udtElastoCombined.

2.3 Synchronization

Synchronization is an important issue since two separate acquisition threads must be managed; one for
ultrasound image acquisition and the other for rigid body tracking. Since these two threads are unlikely to
operate at the same frequency, the time stamp associated with a given image will not exactly match one rigid
transformation recorded by the rigid body tracking thread.

Latest version available at the Insight Journal [ http://hdl.handle.net/1926/137]
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An easy solution to this problem would be the consolidation of the rigid body tracking and the image
acquisition into the same thread. However, this solution is less than optimal in several aspects. First, it is
likely to reduce the overall frequency of the measurements. Second, it would result in less reusable code,
since the acquisition thread would assume that the application has access to both a rigid body tracking
system and an ultrasound imaging system.

In SynchroGrab, the synchronization is instead handled by a class known as vtkTaggedImageFilter,
which selects the rigid body transformations measured immediately before an image as well as the one
recorded immediately after. The selection of the rigid transformations considers a configurable acquisition
lag between the ultrasound image data and the tracking data. Then, a spherical linear interpolation is per-
formed to compute the rigid body transformation for the ultrasound probe at the time that the ultrasound
image was acquired. Finally, a calibration matrix is applied to this transformation in order to obtain the
transformation from the image coordinate system to the world coordinate system. The calibration parame-
ters are computed using the method of Chen et al. [3].

2.4 Ultrasound Volume Reconstruction

The next step after synchronization is 3D volumetric reconstruction. Logically, there are two ways in which
the reconstruction can be coupled with an IGT system. The first approach is to transfer the 2D images and
their associated tracking information to the IGT system, e.g. over a network connection, and have the IGT
system perform the reconstruction. The second approach is to perform the reconstruction outside of the
IGT system and then transfer the resulting 3D volume to the IGT system either by writing it to disk or by
transferring it over the network. The former approach has the advantage that the data can be displayed on
the IGT system immediately as it is acquired, but full-rate data transfer might not be possible depending
on the network speed. The latter approach performs the reconstruction on the system that acquires the data
and does not suffer from a network bottleneck, and has the further advantage that one IGT system can be
swapped out for another. Our chosen approach is a hybrid of the two: the 3D data can be reconstructed
outside of the IGT system, but the IGT system may instead request the 2D data for visualization and/or
reconstruction at the available network data rate. After all data are collected and the 3D reconstruction is
completed, the 3D volume itself is transferred to the IGT system.

A large number of algorithms currently exist to perform volumetric reconstruction from tracked ultrasound
images. Solberg et al. [8] recently presented a review of those algorithms. Any one of those methods could
theoretically be supported by our application. However, the real-time requirements of our application made
us opt for the method presented by Gobbi and Peters [5].

2.5 Network Interface

For the transfer of pose measurements, ultrasound images, and ultrasound volumes from SynchroGrab to
the IGT system, we have chosen to use the OpenIGTLink protocol [1], which provides a simple, functional
network interface for transferring images, pose measurements, and control information between components
of an IGT system. The data is transferred at a user specified rate to a TCP/IP socket, which the OpenIGTLink
module of Slicer 3 then reads and makes available within Slicer for uses such as visualization, registration
and segmentation. It should be noted, however, that no control mechanisms are currently implemented to
preclude flooding the receiver. Therefore, the user must set a transmission rate appropriate to the available
network bandwidth.

Latest version available at the Insight Journal [ http://hdl.handle.net/1926/137]
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Figure 3: Left: Abdominal B-Mode ultrasound acquired with SynchroGrab and displayed by Slicer 3 in the position
and orientation that corresponds to the ultrasound probe. Right: Lumbar phantom B-Mode ultrasound image collected
using SynchroGrab and transmitted to Slicer 3 which also displayed a semi-transparent 3D model.

3 Capture Samples

A lumbar spine phantom and a volunteer’s abdomen were imaged with SyncroGrab to demonstrate its most
important features. The phantom was comprised of three artificial lumbar vertebrae purchased from Saw-
bones (Vashon, USA). These were embedded in a gel made of agar, gelatin, cellulose, glycerol, and water.
To acquire the experimental data, we installed SynchroGrab on a Sonix RP system which was connected to
an Optotrak Certus. The data were transmitted to a second computer (Windows XP, Intel Core2 2.4 GHz, 2
Gb RAM) running a copy of Slicer 3.3 with the OpenIGTLink module. Figure 3 provides samples of images
received in real-time by Slicer.

4 Discussion and Conclusion

In this paper, we presented a software package called SynchroGrab, which addresses the problems of im-
age acquisition, synchronization, reconstruction and transmission that are typical in image-guided therapy
applications that rely on interventional ultrasound.

The proposed software first captures ultrasound images and then synchronizes them with a flow of tracking
information. Then, it can reconstruct 3D ultrasound volumes, if desired. Finally, the resulting images,
volumes and pose measurements can be saved to files or transmitted in real-time through a network interface
to an image-guided therapy interface, such as Slicer 3. SynchroGrab supports the Sonix RP ultrasound
system, so it becomes a simple matter to take full advantage of an open-interface ultrasound system in an
IGT system.

The modular architecture of the proposed software ensures its extensibility. Therefore, adding support for
new ultrasound systems or new tracking devices should be straightforward. More specifically, users of this
system will be able to extend the framework in the following way: open the archive file containing the source
code (provided with the paper), download the external libraries (from Northern Digital and Ultrasonix), build
the source code using CMake, test the software with their own hardware, modify the source code to suit their
particular needs, and finally share their modifications with the community.

Moreover, several C++ classes included in the SynchroGrab source code should be useful for other re-
search teams, and we designed them to be easily reusable. Among these classes, we must mention:

Latest version available at the Insight Journal [ http://hdl.handle.net/1926/137]
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vtkSonixVideoSource that allows one to integrate real-time ultrasound capture in a VTK pipeline,
vtkTaggedImageFilter which synchronizes a flow of images to a flow of tracking information, and
vtkNDICertusTracker which supports the Optotrak Certus in a highly extensible object-oriented frame-
work.

One of the limitations of the current implementation is the fact that network communication is presently
restricted to a single direction (one-way communication). In other words, SynchroGrab can send information
to a compatible IGT system, but do not support incoming communications at the moment. Therefore,
imaging parameters, such as frame rate or image depth, must be supplied to SynchroGrab upon launch and
cannot be changed remotely. We plan to correct this situation by adding a series of commands that can
be triggered remotely. Furthermore, we hope to develop a custom Slicer 3 module that will support those
commands. Another notable improvement would be additional support for the control of 3D probes. Finally,
additional support for new ultrasound systems and new tracking devices will also be considered. Third-party
contributions will thus be welcomed.
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Abstract

Ultrasound has become a very important modality in image-guided therapy. At present, however, the
collection, synchronization and transfer of ultrasonic images are more cumbersome than necessary. This
paper presents a reusable solution to these problems. We propose a software package called Synchro-
Grab, which allows the collection of interventional ultrasound images as well as their synchronization
with a stream of pose measurements. The software includes support for an open-interface ultrasound
system, namely the Sonix RP, from Ultrasonix (Vancouver, Canada). Using an open-interface system
like the Sonix RP allows customization of the imaging process and the capture of the ultrasound images
directly from memory without the need for a frame-grabbing card. Pose measurement is currently per-
formed with an Optotrak Certus by Northern Digital (Waterloo, Canada). However, extensibility was a
primary goal in the design of this software, so the support of new devices can be achieved simply by sub-
classing the relevant base class. SynchroGrab also performs reconstruction of 3D ultrasound volumes
from synchronized data streams. Moreover, the recorded images, volumes and tracking information are
available for visualization or further processing either directly from the file system or from a network
connection compliant with the OpenIGTLink protocol, which is supported by Slicer 3.
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1 Introduction

Over the years, ultrasound imaging has become a very important modality in the field of image-guided
therapy (IGT). Its advantages are numerous and include very high availability of the equipment, innocuity
for the patient and the operator, cost efficiency, and interactivity. However, ultrasound images are generally
noisy and provide only limited information about a patient’s anatomy. Thus, during image-guided therapies,
ultrasound is typically used in combination with high-quality images acquired with computed tomography
or magnetic resonance imaging prior to the intervention.

In addition to multi-modal imaging, IGT often relies on position sensors to track the position and orientation
of different objects during interventions. Surgical instruments can hence be located in 3D, and displayed
in the context of pre-operative images. Moreover, if calibration procedures are performed on a tracked
ultrasound probe, then each pixel of the ultrasound images can be associated with a position in 3D space,
and a 3D volume can be reconstructed from a sequence of 2D images.

For these technologies to be applied as part of an IGT procedure, the interventional ultrasound images,
previously acquired images, and pose measurements must be imported into a common workspace. Once
this information is regrouped, image visualization, analysis, registration and image fusion become possible.
Unfortunately, commercial ultrasound systems do not generally provide such a common workspace, and the
data transfer mechanisms that they do provide are usually not compatible with the real-time requirements of
IGT.

Some surgical navigation systems tackle this problem by providing large, monolithic applications that per-
form all functions within a single integrated package. IGSonix (BrainLAB AG, Heimstetten, Germany),
SonoNav (Louisville, CO, U.S.A.), and CustusX [6] are good examples of this practice. However, from
a software engineering perspective, it would much more interesting to split some of these features into
reusable components. On the other hand, open-source libraries such as IGSTK [4] offers some reusable
components for IGT, but do not necessarily integrate well with existing systems.

In 2004, Boctor et al. [2] discussed the development of a module for Slicer 2 [7]. The module was intended
to reconstruct volumes from tracked ultrasound images, and to make them available in Slicer 2 for further
visualization and/or processing. This was a promising approach because Slicer is an open-source application
that already offers a modular framework for advanced visualization and medical image processing. However,
Slicer recently underwent a large re-engineering effort and the ultrasound module, which was intimately tied
to the original Slicer 2 architecture, is no longer available for use.
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Figure 1: Information flow in SynchroGrab.

The recent proposal of OpenIGTLink [1], which allows the exchange of images and tracking information
using a standardized network protocol, opens the door to a more flexible coupling between reusable software
components in IGT. Moreover, with OpenIGTLink it is simple for different computers to manage different
parts of the real-time image acquisition and interventional navigation. The former needs to comply with
real-time constraints but typically does not require a large amount of computational resources, whereas the
latter requires more computational resources and advanced computer graphics hardware but is more flexible
with respect to timing constraints.

Another recent development is that open-interface ultrasound systems have become common. These allow
more control over the types of ultrasound images collected and also offer direct access to the digital images
rather than relying on digitization of an analog video stream.

In this context, we propose a new software package called SynchroGrab. This application fulfills the fol-
lowing requirements:

• Continuous acquisition of ultrasound images using an open-interface ultrasound system;
• Continuous acquisition of tracking information using a pose measurement system;
• Explicit synchronization of the two acquisition threads;
• Reconstruction of 3D ultrasound volumes using the synchronized data; and
• Transfer of the raw ultrasound images, the 3D volumes and the probe tracking information to an

OpenIGTLink-compliant system.

The architecture of the proposed software is presented in the next section. Some of its components will be
described in greater depth since they are likely to be reused in other applications. Section 3 then presents
some experimental results obtained using SynchroGrab. These results demonstrate the most important fea-
tures of the proposed software. Finally, future work and possible improvements to the architecture is dis-
cussed in Section 4.

2 SynchroGrab : Software Design

SynchroGrab was designed with several objectives in mind. The most important was to fulfill the require-
ments described in Section 1. However, the development of reusable software components was also judged
to be very desirable. To achieve these objectives, the application was split into several logical modules with
well-defined responsibilities. These modules, as well as their relationships, are presented in Figure 1.
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+Probe()
+StartTracking()
+StopTracking()
+IsTracking()
+GetTool()
+GetNumberOfTools()
+Update()
#InternalUpdate()
#ToolUpdate()
#InternalStartTracking()
#InternalStopTracking()

vtkTracker

+Probe()
+Update()
#InternalUpdate()
#InterStartTracking()
#InternalStopTracking()

vtkNDITracker
+Probe()
+Update()
#InternalUpdate()
#InternalStartTracking()
#InternalStopTracking()
#ShutdownCertusSystem()
#ActivateCertusMarkers();
#DeActivateCertusMarkers()

vtkNDICertusTracker

+Set&GetBufferSize()
+GetNumberOfItems()
+Lock()
+Unlock()
+AddItem()
+GetMatrix()
+GetFlagsAndMatrixFromTime()
+GetFlags()

-MatrixArray
-TimeStampArray
-FlagArray
-Mutex

vtkTrackerBuffer

+GetTransform()
+GetBuffer()
+Set&GetToolType()
+Set&GetToolRevision()
+Set&GetToolPartNumber()
+Set&GetToolSerial()

-ToolType
-ToolRevision
-ToolSerialNumber
-ToolPartNumber
-ToolManufacturer

vtkTrackerTool

1 0..*

1

1

Figure 2: Class diagram of the 3D tracking subsystem.

The actual implementation of these modules corresponds to one or several C++ classes. Whenever possible,
these classes were developed by subclassing the relevant VTK classes. This design decision facilitated the
reutilization of existing VTK classes in SynchroGrab, and will also simplify the reutilization of our classes
in other VTK-based applications.

2.1 3D Tracking

Figure 2 illustrates the most important C++ classes of our infrastructure, as well as their relationships. The
base class vtkTracker is an open-source class from Atamai Inc. (London, ON, Canada) and provides
an abstraction of the physical devices that generate rigid body tracking information. Two derived classes
that represent concrete implementations of vtkTracker are vtkNDITracker and vtkNDICertusTracker.
The former supports the AURORA and the POLARIS measurement systems from Northern Digital Inc.
(Waterloo, ON, Canada), since both devices support a common API, while the latter supports the NDI
Optotrak Certus, since the Certus has its own API. Other tracking systems can also be supported if concrete
implementations of vtkTracker are written for them.

Once the correct concrete class is instantiated and communication with the tracking device is established via
the vtkTracker::StartTracking() method, the objects belonging to the helper class vtkTrackerTool
will provide information about the tools currently tracked. The tool poses, status information, and data
timestamps are stored in a circular buffer to provide flexibility in synchronizing the poses with ultrasound
images.

2.2 Ultrasound Image Acquisition

Most commercial ultrasound systems do not allow direct digital access to the captured images during the
acquisition process. To alleviate this problem, most IGT systems support real-time ultrasound image acquisi-
tion by connecting a frame-grabbing card to an analog video output of the ultrasound system. This approach
has many drawbacks. First, it is not possible to gain access to the raw RF signal or to pre-scan converted
images. Second, a significant delay is created by the analog to digital and digital to analog conversions that
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must be performed. Finally, image quality is likely to be decreased by such conversions.

An appealing alternative is the use of an ultrasound system that offers an open interface for data acquisition.
By using the API of one of those systems, access can be gained to the ultrasound images directly from
the system’s memory without the need for any prior conversions. It also becomes possible to standardize
the imaging parameters since those parameters can be established using the same API. The system chosen
for this study is the Sonix RP from Ultrasonix (Vancouver, Canada) because it is the most widely used
open-architecture ultrasound system. Other systems, such as Siemens’ Axius Direct URI or Terason’s Echo
Ultrasound, also offer access to RF data and could be integrated in the future.

It was decided that we would start with the vtkVideoSource that is part of the VTK distribution, and provide
support for the Sonix RP API by creating a derived class which we have called the vtkSonixVideoSource.
By doing so, we have made it possible to swap out our class with any of the other concrete implementations
of vtkVideoSource, which include the vtkWin32VideoSource class for Video-for-Windows supported
frame grabbers, and the vtkMILVideoSource class for Matrox (Montreal, Canada) frame grabbers. The
ability to swap out the video source is very important, since it will not restrict our open source software
package to the proprietary Sonix RP interface.

When the vtkSonixVideoSource class is used, the internet address of the Sonix RP system to which
it should connect (the default being the local computer) can be set. It is also possible to customize the
requested image type with the methods SetImagingMode() and SetAcquisitionDataType(). Hence,
one can request post-scan converted B-Mode images, pre-scan converted B-Mode images and even raw RF
data. The following code excerpt illustrates how the class is typically used.

vtkSonixVideoSource *sonixGrabber = vtkSonixVideoSource::New();
sonixGrabber->SetSonixIP("127.0.0.1");
sonixGrabber->SetImagingMode(BMode);
sonixGrabber->SetAcquisitionDataType(udtBPost);
sonixGrabber->Record();
sonixGrabber->Stop();
sonixGrabber->Rewind();
// Perform image processing on the first image of the buffer here
sonixGrabber->Seek(1)
// Perform image processing on the second image of the buffer
// ...
sonixGrabber->ReleaseSystemResources();
sonixGrabber->Delete();

The method SetImagingMode() takes an integer as input but a C++ enum type enables the user to type
clearer text values which are: BMode, MMode, ColourMode, PwMode, RfMode, F4DMode, ElastoMode.
The method SetAcquisitionDataType() also takes an integer as input and also has an associated enum
type for increased code readability. The supported acquisition data type include: udtBPost, udtMPost,
udtPWSpectrum, udtElastoOverlay, udtBPre, udtMPre, udtElastoPre, udtColorRF, udtPWRF, udtRF,
udtScreen, udtBPost32, udtColorPost, and udtElastoCombined.

2.3 Synchronization

Synchronization is an important issue since two separate acquisition threads must be managed; one for
ultrasound image acquisition and the other for rigid body tracking. Since these two threads are unlikely to
operate at the same frequency, the time stamp associated with a given image will not exactly match one rigid
transformation recorded by the rigid body tracking thread.
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An easy solution to this problem would be the consolidation of the rigid body tracking and the image
acquisition into the same thread. However, this solution is less than optimal in several aspects. First, it is
likely to reduce the overall frequency of the measurements. Second, it would result in less reusable code,
since the acquisition thread would assume that the application has access to both a rigid body tracking
system and an ultrasound imaging system.

In SynchroGrab, the synchronization is instead handled by a class known as vtkTaggedImageFilter,
which selects the rigid body transformations measured immediately before an image as well as the one
recorded immediately after. The selection of the rigid transformations considers a configurable acquisition
lag between the ultrasound image data and the tracking data. Then, a spherical linear interpolation is per-
formed to compute the rigid body transformation for the ultrasound probe at the time that the ultrasound
image was acquired. Finally, a calibration matrix is applied to this transformation in order to obtain the
transformation from the image coordinate system to the world coordinate system. The calibration parame-
ters are computed using the method of Chen et al. [3].

2.4 Ultrasound Volume Reconstruction

The next step after synchronization is 3D volumetric reconstruction. Logically, there are two ways in which
the reconstruction can be coupled with an IGT system. The first approach is to transfer the 2D images and
their associated tracking information to the IGT system, e.g. over a network connection, and have the IGT
system perform the reconstruction. The second approach is to perform the reconstruction outside of the
IGT system and then transfer the resulting 3D volume to the IGT system either by writing it to disk or by
transferring it over the network. The former approach has the advantage that the data can be displayed on
the IGT system immediately as it is acquired, but full-rate data transfer might not be possible depending
on the network speed. The latter approach performs the reconstruction on the system that acquires the data
and does not suffer from a network bottleneck, and has the further advantage that one IGT system can be
swapped out for another. Our chosen approach is a hybrid of the two: the 3D data can be reconstructed
outside of the IGT system, but the IGT system may instead request the 2D data for visualization and/or
reconstruction at the available network data rate. After all data are collected and the 3D reconstruction is
completed, the 3D volume itself is transferred to the IGT system.

A large number of algorithms currently exist to perform volumetric reconstruction from tracked ultrasound
images. Solberg et al. [8] recently presented a review of those algorithms. Any one of those methods could
theoretically be supported by our application. However, the real-time requirements of our application made
us opt for the method presented by Gobbi and Peters [5].

2.5 Network Interface

For the transfer of pose measurements, ultrasound images, and ultrasound volumes from SynchroGrab to
the IGT system, we have chosen to use the OpenIGTLink protocol [1], which provides a simple, functional
network interface for transferring images, pose measurements, and control information between components
of an IGT system. The data is transferred at a user specified rate to a TCP/IP socket, which the OpenIGTLink
module of Slicer 3 then reads and makes available within Slicer for uses such as visualization, registration
and segmentation. It should be noted, however, that no control mechanisms are currently implemented to
preclude flooding the receiver. Therefore, the user must set a transmission rate appropriate to the available
network bandwidth.
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Figure 3: Left: Abdominal B-Mode ultrasound acquired with SynchroGrab and displayed by Slicer 3 in the position
and orientation that corresponds to the ultrasound probe. Right: Lumbar phantom B-Mode ultrasound image collected
using SynchroGrab and transmitted to Slicer 3 which also displayed a semi-transparent 3D model.

3 Capture Samples

A lumbar spine phantom and a volunteer’s abdomen were imaged with SyncroGrab to demonstrate its most
important features. The phantom was comprised of three artificial lumbar vertebrae purchased from Saw-
bones (Vashon, USA). These were embedded in a gel made of agar, gelatin, cellulose, glycerol, and water.
To acquire the experimental data, we installed SynchroGrab on a Sonix RP system which was connected to
an Optotrak Certus. The data were transmitted to a second computer (Windows XP, Intel Core2 2.4 GHz, 2
Gb RAM) running a copy of Slicer 3.3 with the OpenIGTLink module. Figure 3 provides samples of images
received in real-time by Slicer.

4 Discussion and Conclusion

In this paper, we presented a software package called SynchroGrab, which addresses the problems of im-
age acquisition, synchronization, reconstruction and transmission that are typical in image-guided therapy
applications that rely on interventional ultrasound.

The proposed software first captures ultrasound images and then synchronizes them with a flow of tracking
information. Then, it can reconstruct 3D ultrasound volumes, if desired. Finally, the resulting images,
volumes and pose measurements can be saved to files or transmitted in real-time through a network interface
to an image-guided therapy interface, such as Slicer 3. SynchroGrab supports the Sonix RP ultrasound
system, so it becomes a simple matter to take full advantage of an open-interface ultrasound system in an
IGT system.

The modular architecture of the proposed software ensures its extensibility. Therefore, adding support for
new ultrasound systems or new tracking devices should be straightforward. More specifically, users of this
system will be able to extend the framework in the following way: open the archive file containing the source
code (provided with the paper), download the external libraries (from Northern Digital and Ultrasonix), build
the source code using CMake, test the software with their own hardware, modify the source code to suit their
particular needs, and finally share their modifications with the community.

Moreover, several C++ classes included in the SynchroGrab source code should be useful for other re-
search teams, and we designed them to be easily reusable. Among these classes, we must mention:
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vtkSonixVideoSource that allows one to integrate real-time ultrasound capture in a VTK pipeline,
vtkTaggedImageFilter which synchronizes a flow of images to a flow of tracking information, and
vtkNDICertusTracker which supports the Optotrak Certus in a highly extensible object-oriented frame-
work.

One of the limitations of the current implementation is the fact that network communication is presently
restricted to a single direction (one-way communication). In other words, SynchroGrab can send information
to a compatible IGT system, but do not support incoming communications at the moment. Therefore,
imaging parameters, such as frame rate or image depth, must be supplied to SynchroGrab upon launch and
cannot be changed remotely. We plan to correct this situation by adding a series of commands that can
be triggered remotely. Furthermore, we hope to develop a custom Slicer 3 module that will support those
commands. Another notable improvement would be additional support for the control of 3D probes. Finally,
additional support for new ultrasound systems and new tracking devices will also be considered. Third-party
contributions will thus be welcomed.
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