
 

 

Automated MS-Lesion Segmentation by K-
Nearest Neighbor Classification 

 

 

Petronella Anbeek, Koen L. Vincken and Max A. Viergever 

 

July 14, 2008 

Image Sciences Institute 
University Medical Center Utrecht 

Heidelberglaan 100, rm QS.459, 3584 CX Utrecht, The Netherlands 

Abstract 
 

This paper proposes a new method for fully automated multiple sclerosis (MS) lesion segmentation in cranial magnetic resonance 
(MR) imaging. The algorithm uses the T1-weighted and the fluid attenuation inversion recovery scans. It is based the K-Nearest 

Neighbor (KNN) classification technique. The data has been acquired at the Children’s Hospital Boston (CHB) and the 
University of North Carolina (UNC). Manual segmentations, composed by a human expert of the CHB, were used for training of 

the KNN-classification. The method uses voxel location and signal intensity information for determination of the probability 
being a lesion per voxel, thus generating probabilistic segmentation images. By applying a threshold on the probabilistic images 

binary segmentations are derived. Automatic segmentations were performed on a set of testing images, and compared with 
manual segmentations from a CHB and a UNC expert rater. Furthermore, a combined segmentation was composed from 

segmentations from different algorithms, and used for evaluation. The proposed method shows good resemblance with the 
segmentations of the CHB rater. High specificity and lower specificity has been observed in comparison with the combined 

segmentations. Over- and undersegmentation can be easily corrected in this procedure by varying the threshold on the 
probabilistic segmentation image. The proposed method offers an automated and fully reproducible approach that accurate and 

applicable on standard clinical MR images.   

 

1 Introduction 

Multiple sclerosis (MS) is a disease of the central nervous system, affecting brain tissue, and leading to 
various symptoms such as motor impairment and neuropsychological problems. MS can be observed in 
magnetic resonance imaging (MRI) as visible lesions in the brain. Research to this disease is highly 
important for better understanding of causes and progression of the disease, and improvement of 
treatment. MRI plays an important role in MS research, often for determining size and location of affected 
tissue. An accurate and reproducible method for MS-lesion measurement is highly beneficial in large and 
longitudinal studies, in order to compare groups. Several methods for MS or other brain lesion 
segmentation have been developed recently [1-4]. Existing methods are based on different types on MRI 
scans, different underlying mathematics, and have different methods for evaluation. It would be 
advantageous for MS research in general, to compare different segmentation methods. The proposed 
method for MS-lesion segmentation is based on the automatic brain tissue segmentation method that was 
developed by Anbeek et al. [5]. The technique uses K-Nearest Neighbor (KNN) classification, which is a 
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statistical pattern classification technique. Similar to the brain tissue segmentation, this method generates 
probabilistic and binary segmentation images, but has especially been developed for segmentation of MS-
lesions. 

2 Methods 

MS-lesion training and testing data 

MR image sets of 45 patients were provided by two separate sources: 25 images sets from Children’s 
Hospital Boston (CHB) and 20 from University of North Carolina (UNC). The UNC cases were acquired 
on a Siemens 3T Allegra MRI scanner with slice thickness of 1 mm and in-plane resolution of 0.5 mm. 
No scanner information was provided about the CHB cases. The complete set of images of one patient 
consisted of a T1-weighted (T1), a T2-weighted (T2), fluid attenuated inversion recovery (FLAIR) image, 
and diffusion tenser images: the fractional anisotropy map (DTI_FA) and the mean diffusivity map 
(DTI_MD). All data of one patient were rigidly registered to a common reference frame and resliced to 
isotropic voxel spacing, with resolution 512x512x512, using B-spline based interpolation. The image sets 
were randomly divided into training sets for MS-lesion segmentation (10 from each source), and testing 
sets (15 from CHB, 10 from UNC). One set of the CHB testing data was discarded, because of poor 
image quality, resulting in 14 CHB testing image sets. 

 

Manual segmentations and gold standard 

MS-lesion segmentations of all image sets were created manually by two raters, one from CHB, and one 
from UNC. Manual segmentations of all training image sets made by the CHB rater were provided, as 
well as manual segmentations of only the UNC training image sets made by the UNC rater. We decided 
to focus on the segmentations of only the CHB rater, because of inter rater differences, and since this was 
a complete set of manual segmentations. The manual segmentations of the testing image sets have not 
been provided on beforehand to the teams joining the competition. They were used in a later stage as a 
reference for evaluation of the automatic segmentations of the testing data. 

 

Image preprocessing 

Coregistration of the images was already performed before they were provided. Consequently, we 
performed one preprocessing step, concerning the creation of a brain mask, indication the region of 
interest for the segmentation. This reduces the amount of voxels being processed, thus saving computer 
time and memory. The mask was created by applying the brain extraction tool [6] on the T1 image with a 
relatively high value for the fractional threshold (-f). This procedure resulted in a narrow brain mask, 
consisting of brain tissue only. We have observed empirically that this narrow mask gave good 
performance of the segmentation method.  
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K-Nearest Neighbor classification 

The proposed method is based on K-Nearest Neighbor (KNN) classification, and determines for every 
voxel in the image the probability that it is part of MS-lesion tissue. K-Nearest Neighbor classification is 
a statistical pattern recognition method, assigning samples (image voxels) to a class (MS-lesion) by 
searching for samples in a learning set with similar values in some measurable features. A feature space is 
defined, in which each axis represents one of the voxel features. The learning set consists of preclassified 
samples, which are entered into the feature space according to their feature values. A new image voxel is 
classified by comparing it to a number of K learning samples with smallest Euclidian distance to it in the 
feature space. Commonly, the most frequent class among the K learning samples is assigned to this voxel. 
However, our method does not assign one class to the voxel, but determines the probability per voxel 
being part of a lesion. 

Previous research has shown that the FLAIR image contains most distinctive information for 
segmentation of white matter lesions [5]. Since MS-lesion tissue is a kind of white matter lesion, and its 
signal intensity is comparable with white matter lesion signal intensity in MR images, we have chosen to 
use only the FLAIR image in our KNN-segmentation method.  

The proposed KNN-classification method uses two types of features: spatial and intensity features. The 
first group represents the voxel location in the brain that is uniquely defined by the x-, y- and z-
coordinates in the image. Therefore, these three coordinates are used as three features, providing three 
dimensions of the feature space. Second, the signal intensity of a voxel in the FLAIR image denotes the 
last feature, resulting in a four-dimensional feature space. 

As different features have different ranges, the feature space was rescaled to define a proper metric to 
compare distances. This was achieved by variance scaling: for each feature, the mean of the feature values 
was subtracted from the voxel value, and the outcome was divided by the standard deviation. This 
approach resulted in a mean of 0 and variance of 1 for all features. Since the spatial features were also 
normalized by this method, this implicitly corrects for differences in size and location between the 
patients. 

The choice of variable K in KNN-classification is dependent on the relation between the number of 
features and the number of cases. A small K will cause the result being influenced by individual cases, 
while a large value of K makes the classification outcome smoother. In general, for this type of problems 
a large K is favorable [7, 8]. By performing experiments on the training set with different K-values, K = 
40 was chosen. The decision for this choice was made by visual inspection of the images in the training 
set. A larger K did not improve the results appreciably, but had a negative effect on the computational 
efficiency. 

Separate training sets were composed for segmentation of the CHB and the UNC testing sets, from the 
CHB and UNC training patients respectively. From the CHB training set patients 4, 5 and 9 were 
excluded, due to image and manual segmentation quality. For the UNC training set only the manual 
segmentations of the CHB rater were used. Patients 1, 5 and 6 of the UNC training data were excluded for 
similar reasons. Because of the large number of voxels in the training sets only 5 percent of the samples 
were randomly selected, and inserted in the feature space. This reduced computation time and computer 
memory significantly.  
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The voxel probability for being an MS-lesion was defined as the fraction of lesion voxels amongst the K 
closed neighbors in the feature space. The outcomes were represented in an image, showing the lesion 
probability per voxel, called the probability map. Subsequently, by applying thresholds with values 
between 0 and 1 to the probability maps, binary segmentations of the tissue types were derived. By 
varying the thresholds, different binary segmentations were generated: a low threshold produces a 
relatively wide segmentation, which becomes tighter and more specific when the threshold is increased. 

For determination of the optimal value for the threshold, probabilistic segmentations were created with 
the KNN-method from the images in the training set. From these probability maps binary segmentations 
were derived with different thresholds. These binary segmentations were compared with the provided 
manual segmentations visually and by calculation of the Tanimoto coefficient. This procedure resulted in 
an optimal threshold of 0.4, which was applied on all probabilistic segmentations of the testing sets. 

3 Results 

Probabilistic segmentations of the MS-lesions have been generated for all CHB and UNC testing patients. 
An example of the segmentation is represented in figure 1, showing the FLAIR image, the probability 
map, and a binary segmentation that is derived by applying a threshold of 0.4 on the probability map. 

All binary segmentations of the testing images have been compared with manual segmentations of the 
two raters: a UNC rater and a CHB rater. Furthermore, a STAPLE segmentation was composed from all 
submitted segmentations of the competition [9]. The segmentation of our method was also compare with 
this combined STAPLE segmentation. The results have been represented in table 1. This table shows as 
measures for the comparison with the UNC and CHB raters: 

• Volume diff. (volume difference): absolute percent volume difference to the expert rater 
segmentation. 

• Avg. Dist. (average distance): the absolute percent volume difference to the expert rater 
segmentation. 

• True Pos. (true positive rate): percentage of the number of lesions in our segmentation that overlap 
with a lesion in the expert segmentation. 

• False Pos. (false positive rate): percentage of the number of lesions in our segmentation that don’t 
overlap with a lesion in the expert segmentation. 

All measures have been scored in relation to how the expert raters compare against each other. A score of 
90 for any of the metric indicates a comparable performance with an expert rater. 
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Figure 1 MS-lesion segmentation results. Top left: FLAIR image; top right: probabilistic segmentation, 
showing probability of lesion per voxel (see color bar); down left: binary segmentation, derived from 
probabilistic segmentation with threshold 0.4. 
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Table 2 Evaluation results of the automatic segmentations, compared with three different gold standards: 
manual segmentations of the UNC rater, of the CHB rater, and of the combined STAPLE segmentation of 
different automatic methods. 

The outcomes show that the all average scores of all measures, except the False Positive Rate are between 
79 and 93. The scores compared with the UNC rater are between 79 and 85, and compared with the CHB 
rater are between 84 and 93. This means that the binary segmentations better resemble the reference 
segmentations of CHB rater, than those of the UNC rater. Compared with the CHB rater, the 
segmentation method performs comparable with a human expert, with respect to the volume difference, 
average difference and true positive rate. Only the False Positive Score is lower for both raters. In 
combination with the relatively high False Positive Rate, this may indicate a slight oversegmentation with 
respect to the reference segmentations. 

For evaluation of the segmentation results compared with the combined STAPLE segmentation the 
specificity, sensitivity, and positive predictive value (PPV) were calculated. The PPV is the ratio of true 
positives to the sum of true positives and false positives. This coefficient provides a good measure 
combining both sensitivity and specificity. The average measures for the STAPLE segmentation 
evaluation, show a high specificity and a lower sensitivity, indication that our segmentation are more 
conservative than the combined STAPLE segmentation. 
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4 Discussion 

In this paper, we propose a method for fully automated MS-lesion segmentation with good results, which 
is very suitable for usage in clinical practice. Lesions are segmented with an accuracy that is comparable 
to a human rater. Furthermore, the method is fully reproducible, which is highly advantageous in large 
and longitudinal cohort studies. 

The T1 and FLAIR images are the only images used in this method. These images are quite common in 
clinical practice, which makes this method easy and widely applicable. 

We have used the manual segmentations of the CHB rater only for training of the method. This was done 
to achieve an optimal segmentation procedure based on the manual segmentations of one rater. The result 
is appreciated from the evaluation table. The automatic segmentations of the testing data show a good 
resemblance with the CHB rater. The accuracy is comparable with this expert human rater. However, 
slight oversegmentation of the testing set with respect to the human rater has been observed from the 
evaluation results. This can be solved by applying a higher threshold on the probability map, making the 
binary segmentations smaller. On the other hand, compared with the combined STAPLE segmentation the 
lesions may be undersegmented. We can conclude from this that it is difficult to define one ultimate gold 
standard. Despite the presence of two manual segmentations as gold standard and a combined automatic 
result, it is still difficult to identify the most favorable segmentation. Brain abnormalities, such as MS-
lesions, have a large partial volume area, since their intensity changes gradually into normal tissue. 
Therefore, the ultimate goal of the segmentation mostly determines the suitability of the segmentations. In 
large cohort studies, a structural over- or undersegmentation may not be problematic, as long as it is 
consequently performed. In this case, reproducibility is highly important, since a proper comparison 
between groups must be guaranteed. The proposed method is fully automated and reproducible. 

The T1 image has been used for the creation of the brain mask, and only the FLAIR image was involved 
in the KNN-classification stage. Not using all image types may seem unfavorable, since extra features 
may add knowledge to the system. However, in previous study we have shown that in KNN-classification 
features with less information that existing features disturb the distances in the feature space, hence 
influencing the results negatively. Therefore, in KNN classification, reducing the dimensionality can 
improve the outcome. 

The brain mask also has great consequences for the accuracy of the segmentation. A mask that is too wide 
influences the scaling of x-, y- and z-coordinates, and decreases the benefit of the spatial features. 
Furthermore, a large amount of surrounding tissue, like skull and skin, can disturb the KNN-classification 
of other tissue types. We opted for the brain extraction tool, because this generates a very accurate cortex 
mask in the T1 image. In general, it is important that the mask is similar for all patients, in the training set 
as well as in the testing set. 

The generation of probabilistic in stead of binary segmentations is advantageous, since it provides large 
flexibility in further processing. According to the goal of the segmentation and the wishes of the user the 
segmentation can be adjusted to a wider or narrower one easily by the choice of the threshold on the 
probability map. Furthermore, the calculation of lesion volume can also be performed by using the 
probabilistic voxel values, sometimes giving more accurate results than using the binary segmentation. 
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In conclusion, KNN-classification provides a convenient technique for probabilistic segmentation of MS-
lesion tissue. The proposed method is straightforward, in the sense that little preprocessing and no 
postprocessing steps are incorporated, and can be applied to routine diagnostic MRI. Therefore, it is 
suitable for brain segmentation problems in a large variety of applications. 
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