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Abstract

This paper presents a new fully automatic method for segmentation of brain images that possess multiple
sclerosis (MS) lesions. Multichannel magnetic resonance images are used to delineate multiple sclerosis
lesions while segmenting the brain into its major structures. The method is an atlas based segmentation
technique employing a topological atlas as well as a statistical atlas. An advantage of this approach
is that all segmented structures are topologically constrained, thereby allowing subsequent processing
with cortical unfolding or diffeomorphic shape analysis techniques. Validation on data from two studies
demonstrates that the method has an accuracy comparable with other MS lesion segmentation methods,
while simultaneously segmenting the whole brain.
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Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system that commonly leads to
inflammatory and atrophic pathology, often causing cognitive impairment [1, 2]. It is primarily expressed
as focal lesions in the white matter (WM) of the brain, but the state and progression of the disease is also
correlated with cerebral atrophy [1, 3]. Because of its superior contrast, magnetic resonance (MR) imaging
is the modality of choice for clinical evaluations of MS. Quantitative analysis of MR images to measure and
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monitor the lesion load and tissue volumes has also become invaluable for patient follow-up and evaluation
of therapies. Manual delineation of MS lesions, however, is both challenging and time-consuming since
three-dimensional information from several MR contrasts must be integrated.

Several techniques have been proposed for automated MS lesion segmentation. Most of these techniques
rely on multichannel MR acquisitions and then employing pattern recognition techniques to detect pixels
that are either outliers to the standard intensity profiles of healthy brain tissue [4, 5], or are similar to lesion
intensity profiles derived from a training set [6, 7]. Since the intensities of lesions often overlap with the
intensities of other structures in the brain, additional contextual processing is often utilized to minimize false
positives. The problem of segmenting MS lesions is closely related to the detection of white matter signal
abnormalities that frequently occur in Alzheimer’s disease and older populations [8, 9, 10].

Most of these techniques focus solely on lesion segmentation, even though they may recover a tissue classi-
fication as well [5, 6, 7, 11]. The extent and location of brain atrophy, important for monitoring the progres-
sion of the disease, is either not computed or is not subject to validation. Standard processing techniques for
measuring these quantities are often not applicable to data that possess lesions. Furthermore, none of these
methods segment the sub-cortical structures of the brain. Advanced analysis of cortical structure [12, 13] is
also not readily applicable as the topology of the brain is changed by the lesions. Another disadvantage of
many lesion segmentation algorithms, particularly those that employ training data to model lesion intensity
profiles, is that they are dependent on a specific acquisition pulse sequence. These approaches must be
modified or re-trained to process data acquired using alternative pulse sequences.

In this paper, we propose a new technique for segmenting white matter lesions in MS that provides a detailed
and topologically consistent segmentation of the brain into its main cortical and sub-cortical components.
The method incorporates both spatial and intensity information to segment multichannel MR images without
post-processing. Moreover, this method enforces topological constraints in such a way that the segmented
images reach topological equivalence with those of healthy subjects, allowing the direct use of techniques
for subsequently performing cortical reconstruction and cortical unfolding [13], as well as diffeomorphic
shape analysis [14]. Although it utilizes multichannel acquisitions, training data is not required to model the
intensity distributions, allowing the algorithm to be flexible enough to be applied to data originating from a
variety of pulse sequences.

The method extends our previous work on topology-preserving anatomical segmentation [15] by introduc-
ing several modifications that effectively model the lesions while maintaining the constraints provided by
topological and statistical atlases. The key observation from which the new approach is formulated is that
topological outliers, such as lesions, can be addressed in a topology-preserving framework when they are
grouped together with the appropriate classes. We validate this approach using manual delineations from
two studies of MS patients, demonstrating good performance.

1 Methods

1.1 Statistical and Topological Atlas-based Segmentation in Healthy Anatomy

Our algorithm segments the brain into its major structures (cerebral gray and white matter, cerebellar gray
and white matter, basal ganglia, ventricles, and brainstem) while delineating MS white matter lesions. It
is based on our previous work that incorporated information from statistical and topological atlases into an
intensity-based classification technique [15]. This method is capable of segmenting brains while preserving
the global topology of these structures. In this section, we briefly explain the different components of this
method, before introducing the specific improvements required for handling lesions.
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1.1 Statistical and Topological Atlas-based Segmentation in Healthy Anatomy 3

The segmentation method utilizes a statistical atlas as well as a topological atlas. The statistical atlas is
built from a set of 18 manual delineations of the structures of interest, based on the IBSR dataset [16]. The
boundary of each structure was blurred to make a smooth probability map and to account for anatomical
variations beyond those present within the training set. The topological atlas is a parcellation of the brain
edited to encode a specific topology for each structure and group of structures, based on statistical atlases and
anatomy textbooks. The topological atlas is used for preserving topology as well as lowering the influence
of competing intensity clusters in regions that are spatially disconnected, while the statistical atlas affects
the segmentation of adjacent structures having similar intensity. Prior to the segmentation, the atlas is
rigidly registered to the studied MR image, and the registration is further updated at each iteration of the
segmentation algorithm.

Given a multichannel MR image {Ii}, where i denotes the channel index, the segmentation algorithm per-
forms two interleaved processes consisting of (1) performing a fuzzy segmentation, (2) defining topologi-
cally consistent regions using fast marching. The fuzzy segmentation is obtained by minimizing the follow-
ing energy function:
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with respect to fuzzy membership functions u jk for each pixel j and structure k, a gain field gi
j that models

intensity inhomogeneities for each channel i, and the intensity centroids ci
k for each structure. The first term

in (1) is data driven, the second term enforces smoothness on the memberships [17], and the third term
controls the influence of the statistical atlas. The parameters β and γ control the relative weighting of each
term and are set empircally. The exponent q is a parameter controlling the “hardness” of the membership
functions and is typically set to 2. The gain field is a smoothly varying function modeled as a low degree
polynomial (see [18] for details). The variables p jk are probabilities derived from the statistical atlas that
represents the prior probability of pixel j being inside structure k. The variables wkm and r jk are weighting
the impact of the atlas and the structure relationships as described in the following.

The atlas weight wkm between two classes is a function of distance between their centroids:
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where sw is a parameter and typically set to 0.1. The atlas weight is close to one when ck ' cm but goes to
zero when ck 6= cm, so that the priors influence the segmentation only where the intensity contrast between
structures is low.

The relationship weights r jk take into account global and local relationships between the structures, and are
defined by

r jk =

{
1 k for j in k or a structure bordering k,

1
2p jk

otherwise. (3)

The relationship weights penalize against membership configurations that are inconsistent with the topology
atlas.

The energy function (1) is used to compute membership functions for each structure in a coordinate de-
scent fashion, similar to FANTASM (Fuzzy And Noise Tolerant Adaptive Segmentation Method) [17]. In
addition, we compute a “hard” segmentation that is derived from the memberships but is constrained to
be homeomorphic to the topology template. This hard segmentation is performed using two successive
iterations of a fast marching front propagation technique, where the speed function is modulated by the
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1.2 Lesions in Topology-preserving Segmentation 4

memberships and the topology is preserved. The first step thins the structures into a skeleton-like object and
then the second step grows the structures back to find the optimal boundary, using a minimal path strategy
[19, 15].

The complete algorithm follows these steps:

1. Align atlases to image and set initial segmentation to the topological atlas.

2. Compute r jk from current hard segmentation

3. Compute the memberships u jk, centroids ck and the inhomogeneity field g j.

4. Thin structures using the fast marching algorithm.

5. Grow back the structures and update the segmentation.

6. Refine the alignment of the atlases.

7. Loop to step 2 until convergence.

The convergence criterion is the relative amount of change in the energy E with each iteration. We choose a
threshold of 10−4 or maximum of 20 iterations.

1.2 Lesions in Topology-preserving Segmentation

The segmentation method above is based on anatomical priors, which seems to conflict with the globally
distributed nature of MS lesions. Since lesions can occur anywhere in the WM, we cannot associate to them
a specific topological or statistical model, unlike other structures. Similarly, the topology of the WM is
modified arbitrarily by the appearance of lesions. However, if we make the observation that the MS lesions
must appear inside the WM region, we can then assume that the structures made of WM grouped with the
lesions have the same shape and topology as healthy WM. Thus, in an anatomical sense, WM and lesions
are treated as a single structure. This allows our previously generated topological and statistical atlases to be
directly applicable to the segmentation of brain images possessing lesions, even though they were created
from images of healthy subjects.

To address lesions in the algorithm, we first add an additional lesion class to our model, with a corresponding
lesion membership function and intensity centroid. We also need to modify the definitions of the atlas
weights, wkm, and the relationship weights, r jk, to reflect the new model, as described later in this section.
The values of the statistical atlas prior, p jm, for lesions are set to the WM value. The speed function for
evolving the hard segmentation of the grouped WM and lesions uses the sum of membership functions for
WM and lesions. The lesion and WM are then separated by selecting, inside the grouped region, whichever
has the higher membership value. With these alterations, we preserve the topology of brain structures while
computing a competitive process between WM, lesions, and neighboring structures.

The atlas weights should be large when the centroids of two nearby structures are close to each other. For
the lesion atlas weight, we use the lesion centroid to compute wkm in (2). When comparing lesions and
WM, however, the atlas priors should have no influence, so we set wlesion,wm = 0. Similarly, the relationship
function r j,lesion can be replaced by the function of the underlying region, i.e. r j,lesion = r j,wm. However, in
some regions we further modify this function to reduce the potential for false postives.

Classifying lesions using a tissue classification or clustering technique often suffers from a large amount of
false positives. This is due to the fact that lesions can have intensity profiles close to those of other structures
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1.2 Lesions in Topology-preserving Segmentation 5

T1 T2 PD FLAIR

Figure 1: MS lesions contrasts in MR images: hypointense WM in T1 looks similar to GM, hyperintense
WM on T2 and PD looks similar to CSF. Lesions are brighter than other tissues on FLAIR, but the boundary
of the ventricles is also hyperintense (see areas pointed by red arrow).

in the brain. For example in T1 images, MS lesions appear as hypointense WM voxels whose intensity is
close to GM intensity (see Fig. 1). Because we compute a hard segmentation of brain structures at each step
of our algorithm, we can use our knowledge about areas where false positives commonly occur to define an
appropriate relationship function. In many cases, it is unlikely that MS lesions appear right at the boundary
between cortical or sub-cortical GM and WM. However, because the intensity centroid of the lesion class
lies between centroids of these structures, their boundaries are common areas for false positives. Similarly,
the boundary between WM and ventricles may appear bright in T2, PD and FLAIR (FLuid Attenuated
Inversion Recovery) images and yet not contain any lesion.

One area where false positives commonly occur is in the WM between ventricles. This occurs particu-
larly because this area tends to enhance on FLAIRS even when lesions are not present. By modifying the
statistical atlas to treat this region as a separate class, we are able to reduce these false positives. (see Fig 2)

FLAIR Lesions without separated WM Lesions with separated WM inter-ventricular WM

Figure 2: Example of removing false positives using an interventricular-WM class. White arrows show
the common false positives (caused by hyper-intensities between ventricles) which have been removed by
adding the extra class.

Another area where false positives often occur is along the GM/WM boundary. To address this problem,
we update the relationship function between lesion and this structures as a function of the distance from the
boundary of GM , ventricles and inter-ventricular WM:

r̃ j,lesion =


(

d2
j,V EN

d2
max,V EN

)r j,wm d j,V EN ≤ dmax,V EN ,

(
d2

j,GM

d2
max,GM

)r j,wm d j,GM ≤ dmax,GM and d j,V EN > dmax,V EN ,

r j,wm otherwise.

(4)

where d j,V EN and d j,GM are the distance to ventricles and GM structures.

In addition to modifying the lesion relationship function with respect to distance from GM and ventricles,
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we also modify it with respect to distance from inter ventricular WM:

r̃ j,lesion =

 (
d2

j,WMint
d2

max,WMint
)r̃ j,lesion d j,WMint ≤ dmax,WMint ,

r̃ j,lesion otherwise.
(5)

where d j,WMint is the distance from boundary of inter-ventricular WM.

In addition, the relationship function for the cortical GM is also modified in the region where d j,V EN <
dmax,V EN , to preserve the boundary between WM and CSF :

r̃ j,gm =

{
(

d2
j,V EN

d2
msx,V EN

)r j,gm d j,V EN ≤ dmax,V EN ,

r j,gm otherwise.
(6)

The relationship function for sub-cortical structures are unchanged, as they legitimately share a boundary
with the ventricles. The distances dmax,V EN and dmax,GM used must be small, as lesions may still appear in
the vicinity of the boundaries. In our experiments, we set d2

max,V EN = d2
max,GM = 3 voxels2. However we

chose the distance from inter-ventricular WM bigger because lesions can not appear too close to boundary
of this region, we chose dmax,WM = 5 voxels.

Finally, an initialization for the intensity centroids of the different structures is necessary. We employ a
simplistic intensity template of the expected centroids for each modality. When processing a multichannel
image, we first estimate the robust minimum and maximum of the intensity in each channel (the intensity
values at 5% and 95% of the histogram, respectively), and normalize the profiles such that 0 corresponds to
the minimum and 1 to the maximum. We initialize the centroids to empirically determined values stemming
from the expected intensities of the three major tissue classes and lesions. After the centroids are initialized,
however, they are allowed to evolve freely to minimize the energy of Eq 1. In some data sets where the
the initial segmentations are particularly poor and intensity inhomogeneities are strong, the lesion centroid
computation can become unstable. To address this issue, we employ a weighted update scheme to compute
the centroids for only the lesion class as follows:

cnew
lesion = (1−λ)cnew

lesion−λ cprevious
lesion (7)

λ is chosen with respect to amount of inhomogeneity in data set. We set λ = 0.8 in this work.

2 Experiments

We applied our method to the two different studies of MS patients from the MICCAI Challenge. Study 1
includes 10 patients while Study 2 consists of 14 cases. In both studies T1, T2 and FLAIR acquisitions
with 0.5mm isotropic resolution are available. To reduce the computational burden, we subsampled the
data to 1mm cubic volumes. Results were upsampled to the original resolution after processing. Two data
sets were manually segmented by two human experts and the automated segmentation was compared with
segmentation of these two raters. Four metrics were computed to evaluate the performance of automated
methods: Volume Difference, Average Distance, True Positive and False Positive. The volume difference
captures the absolute percent volume difference to the expert rater segmentation. The average distance
captures the symmetric average surface distance to the expert rater segmentation. True positive rate is the
number of lesions in automated segmentation that overlaps with a lesion in the expert segmentation divided
by the number of overall lesions in the expert segmentation. False positive rate is the number of lesions
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in automated segmentation that do not overlap with any lesion in the expert segmentation divided by the
number of overall lesions in automated segmentation. Moreover, using all manual segmentations as well
as the high quality segmentations provided by several automated methods, a consensus segmentation has
been computed via the STAPLE methodology. The STAPLE values of sensitivity, specificity and predictive
value (posterior probability value) were also computed. Positive predictive value (PPV) is the ratio of true
positives to the sum of true positives and false positives. Finally all metrics are scored in relation to how
expert raters compare against each other. A score of 90 for any of the metric would equal performance akin
an expert rater. An overall score of 80 was achieved by our method. Table1 shows the complete results of
our method.Fig 3 and Fig 4 shows an actual result computed using our method on selected cases from the
Study 1 and Study 2, respectively.

Ground Truth UNC Rater CHB Rater STAPLE
All Dataset Volume Diff. Avg. Dist. True Pos. False Pos. Volume Diff. Avg. Dist. True Pos. False Pos. Total Specificity Sensitivity PPV

[%] Score [mm] Score [%] Score [%] Score [%] Score [mm] Score [%] Score [%] Score
UNC test1 Case01 53.1 92 3.4 93 41.9 75 64.9 70 31.5 95 3.0 94 43.8 76 60.8 73 84 0.9933 0.3549 0.7137
UNC test1 Case02 206.9 70 4.6 90 67.6 90 60.7 73 59.5 91 2.1 96 45.5 77 29.9 91 85 0.9751 0.5407 0.7637
UNC test1 Case03 54.2 92 2.0 96 35.9 72 19.1 98 40.8 94 1.4 97 39.7 74 14.9 100 90 0.9991 0.6219 0.9733
UNC test1 Case04 37.6 94 2.0 96 52.6 81 53.8 77 3.1 100 1.2 97 74.1 94 59.6 73 89 0.9966 0.7160 0.9449
UNC test1 Case05 28.5 96 5.7 88 45.2 77 72.9 65 61.6 91 6.3 87 65.2 89 80.0 61 82 0.9773 0.3658 0.3977
UNC test1 Case06 40.8 94 3.4 93 75.9 95 78.7 62 528.9 23 22.5 54 87.5 100 93.3 53 72 0.9336 0.8339 0.4493
UNC test1 Case07 57.3 92 4.8 90 37.7 73 86.8 57 0.9 100 6.8 86 60.0 86 91.9 54 80 0.9853 0.2851 0.4336
UNC test1 Case08 47.8 93 1.9 96 57.4 84 50.9 79 14.6 98 3.4 93 100.0 100 61.8 72 89 0.9982 0.6448 0.9092
UNC test1 Case09 72.9 89 40.9 16 0.0 51 100.0 49 143.9 79 47.1 3 0.0 51 100.0 49 48 0.9805 0.0034 0.0040
UNC test1 Case10 18.4 97 10.3 79 50.0 80 86.2 57 328.1 52 22.2 54 83.3 99 92.5 53 71 0.9849 0.2880 0.4102
CHB test1 Case01 55.2 92 4.0 92 40.0 74 54.2 77 36.1 95 1.9 96 67.7 90 65.3 70 86 0.9997 0.3564 0.9635
CHB test1 Case02 22.8 97 4.2 91 54.5 82 84.8 58 67.1 90 2.4 95 57.9 84 46.8 81 85 0.9981 0.3803 0.9111
CHB test1 Case03 572.7 16 16.6 66 57.1 84 98.3 50 225.1 67 15.3 68 53.3 82 94.7 52 61 0.9025 0.3323 0.0504
CHB test1 Case04 34.9 95 6.9 86 81.8 98 82.7 59 35.1 95 2.4 95 72.2 93 55.8 76 87 0.9950 0.4156 0.8123
CHB test1 Case05 16.0 98 11.4 76 0.0 51 100.0 49 84.1 88 5.6 88 30.4 69 85.8 57 72 0.9923 0.0160 0.0992
CHB test1 Case06 1.0 100 4.1 92 50.0 80 95.4 52 5.5 99 4.1 92 40.9 75 97.7 50 80 0.9599 0.3854 0.4053
CHB test1 Case07 53.8 92 4.2 91 43.3 76 74.7 64 71.9 89 3.3 93 47.4 78 63.6 71 82 0.9946 0.2055 0.7415
CHB test1 Case08 10.8 98 1.1 98 92.6 100 67.1 69 25.9 96 1.3 97 76.5 95 52.9 77 91 0.9958 0.7585 0.9060
CHB test1 Case09 6.5 99 3.1 94 40.3 74 45.5 82 21.2 97 2.4 95 37.0 73 32.1 90 88 0.9910 0.6218 0.8314
CHB test1 Case10 100.0 85 4.3 91 84.2 99 77.9 62 2.2 100 3.9 92 62.1 87 68.8 68 86 0.9838 0.4172 0.5569
CHB test1 Case11 91.3 87 24.2 50 0.0 51 100.0 49 97.2 86 20.0 59 10.3 57 92.9 53 62 0.9982 0.0000 0.0015
CHB test1 Case12 42.4 94 1.8 96 55.4 83 66.4 69 42.7 94 1.8 96 35.9 72 76.3 63 83 0.9893 0.5906 0.8200
CHB test1 Case13 43.3 94 2.0 96 70.0 91 76.5 63 65.2 90 4.7 90 66.7 89 47.1 81 87 0.9980 0.4346 0.9292
CHB test1 Case15 3.0 100 3.6 93 61.6 87 85.1 58 27.9 96 5.1 89 72.3 93 87.9 56 84 0.9562 0.6277 0.6175
All Average 69.6 90 7.1 85 49.8 80 74.3 64 84.2 88 7.9 84 55.4 83 68.8 68 80 0.9824 0.4249 0.6102
All UNC 61.8 91 7.9 84 46.4 78 67.4 69 121.3 82 11.6 76 59.9 85 68.5 68 79 0.9824 0.4655 0.6000
All CHB 75.3 89 6.5 87 52.2 81 79.2 61 57.6 92 5.3 89 52.2 81 69.1 68 81 0.9825 0.3958 0.6176

Table 1: Result of comparison of automated lesion segmentation with manual segmentation of two human
experts

The algorithm seemed to perform poorly on 4 cases. On Case CHB03, the volume difference score was
lower than expected. In this case, our method found some false positives on the WM/GM boundary. This
problem was likely due to the low quality of the T1 channel which makes the down-weighting of the GM
boundary less accurate. Moreover, we observed that the FLAIR channel suffers from a large amount of
inhomogeneity that caused some of the voxels on the GM/WM boundary to have an intensity close to that
of lesions.

On cases CHB05, CHB11 and UNC09, the method achieved low scores for True and False Positives. These
three cases posses a very low amount of lesions. In these cases our method also segmented very few voxels
as lesions which causes the centroid computation to be somewhat unstable. The centroid for the lesion class
can easily move far away from its optimal value given a few misclassified pixels. The large inhomogeneity
in the FLAIR channel also contributed to this problem. We expect a more robust estimation procedure for
the centroids and perhaps a more sophisticated inhomogeneity correction scheme would be needed. In our
future work, we will also investigate the automated identification of such cases in order to select the most
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T1 T2 FLAIR

Classification Inter-ventricular WM Lesions

Figure 3: Example of simultaneous tissue classification and lesion segmentation from Study 1, showing the
classification of major structures, as well as segmented lesions and inter-ventricular WM.

adequate parameter settings from the data.

Additional validation results on computational phantoms and real data are described in [20]. In this work,
a previous version of the algorithm achieved a Dice coefficient of 0.720 for lesions and Dice coefficients of
0.900, 0.925, 0.899, 0.720, 0.871, 0.879 and 0.774 for 7 other structures (cortical csf, cerebral WM, cerebral
GM, brainstem grouped with cerebellar WM, cerebellar GM, ventricles, sub-cortical structures including
caudate, putamen and thalamus, respectively) when applied to the Brainweb MS phantom [21] under default
noise and inhomogeneity settings. Moreover, an intraclass correlation of 0.772 was achieved on a data set of
10 real MR images acquired from MS patients. Overall, the algorithm was shown to be comparable to other
state of the art algorithms while yielding a topologically consistent segmentation of multiple structures.

3 Conclusion

In this paper, we presented a new fully automatic segmentation technique for detecting MS lesions. The
performance of the method was evaluated on data sets from two MS patient studies, and exhibited good
performance on most of the cases. The proposed technique not only gives us a reasonable segmentation of
lesions, but also gives us a topologically correct segmentation of the main brain regions, unlike previous
lesion segmentation algorithms. Preserving topology has been of central interest in neuroimaging for ap-
plications ranging from computational anatomy to cortical reconstruction and mapping. Until now, these
methods have focused on brains devoid of lesions and other structures that would alter the overall topol-
ogy. In Multiple Sclerosis, brain atrophy has been observed in addition to the appearance of lesions. The
proposed algorithm will enable volumetric analysis, cortical thickness analysis, and diffeomorphic shape
analysis in MS populations, potentially leading to new insights on the disease.
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T1 T2 FLAIR

Classification Inter-ventricular WM Lesions

Figure 4: Example of simultaneous tissue classification and lesion segmentation from Study 2, showing the
classification of major structures, as well as segmented lesions and inter-ventricular WM.
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