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Helsinki, 6.7.2008

Abstract

A method for automatic liver tumor segmentation from computer tomography (CT) images

is presented in this paper. Segmentation is an important operation before surgery planning,

and automatic methods offer an alternative to laborious manual segmentation. In addition,

segmentations of automatic methods are reproducible, so they can be reliably evaluated and

they do not depend on the performer of the segmentation. In this work, the segmentation is

performed in two stages. First a rough segmentation of tumors is obtained by simple thresh-

olding and morphological operations. The second stage refines the rough segmentation result

using fuzzy clustering and a geometric deformable model (GDM) that is fitted on the clus-

tering result. The method was evaluated with data provided by Liver Tumor Segmentation

Challenge 08, to which the method also participated. The data included 10 images from

which 20 tumors were segmented. The method showed promising results.

Yrjö Häme is with the department of Biomedical Engineering and Computational Science

of Helsinki University of Technology. Email: yrjo.hame@tkk.fi



1 Introduction

Important information of the condition and location of liver structures can be acquired by

accurate image segmentation. Segmentation enables quantitative disease assessment and is

an important step before surgery planning. Other purposes include research in pathology

prediction by determining morphological and structural changes or deformations, multi-

modality fusion and registration, navigation and image-guided surgery, 3D visualization

and interactive segmentation. Manual segmentation is often laborious, inaccurate and the

result varies strongly dependent on the observer. Manual segmentation is also not reliably

reproducible. These shortcomings have created a demand for automatic and semi-automatic

segmentation methods, which should be fast, accurate and robust. (See Pham et al [7]).

In the task of liver tumor segmentation from CT images, anatomical variance combined

with limited resolution and random noise of the imaging method are common problems

that require task-specific algorithms. Typically for medical images, the volumes are three-

dimensional which complicates the task even further compared to simple two-dimensional

images.

A novel method for automatic liver tumor segmentation from CT images is proposed in this

paper. The segmentation is performed in two stages. First a rough segmentation of the

tumors is obtained by simple thresholding and morphological operations. The second stage

refines the rough segmentation result using a fuzzy clustering approach that incorporates

a spatial smoothing term to the regular fuzzy c-means (FCM) clustering. The final tumor

segmentation is obtained by fitting a geometric deformable model (GDM) on the membership

function generated by the clustering. The approach of the refinement stage is similar to the

one used for cortical reconstruction from magnetic resonance images by Han et al [1].

The method was evaluated using data provided by Liver Tumor Segmentation Challenge 08

(see http://lts08.bigr.nl/index.php), to which the method also participated. All parameter

values used by the method are chosen to optimize performance for the training set of the

evaluation data. After this introduction the second chapter describes the rough segmen-

tation, followed by a description of the refinement stage in the third chapter. The fourth

chapter presents results of the evaluation, and the fifth chapter concludes the document with

a discussion.

2 Rough Segmentation

Starting with a raw CT image volume I (see fig. 1(a)), a constant with the value of 1000

is subtracted from the intensity values, resetting the scale so that voxels corresponding to

air are assigned approximately an intensity value of −1000. The result of the subtraction

is denoted by I
′

. From I
′

, three volumes are generated: the first one is a binary mask M1

that is obtained by thresholding

M1(x) =







1, when a < I
′

(x) < b

0, otherwise
(1)

where x = [x1, x2, x3] represents a single point in the image volume and the parameters are

chosen as a = −20 and b = 240. From M1, all holes with size of less than 10 are filled, and
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the resulting mask covers all parts of the image I
′

with healthy liver tissue as well as all

liver tumor tissue. The complement of M1 is considered background.

The second volume is generated by filtering I
′

using a Gaussian filter with standard deviation

of 1.0 in all three coordinate directions (x1, x2, x3). The result is denoted by I
′

g. The

third volume is generated by filtering I
′

one slice at a time using nonlinear diffusion (see

Weickert [10]). Nonlinear diffusion smooths the image but preserves boundaries and produces

piecewise constant regions, and it was used in a method for liver segmentation from CT

images by Lamecker et al [3].

Let I(x) be the original image, then the filtered image F (x, t) is obtained by solving the

partial differential equation

∂tF = div g(|∇Fσ|
2)∇F ) (2)

when F (x, 0) = I(x) and Fσ is the result of Gaussian smoothing of F with standard deviation

σ. The term |∇Fσ|
2 acts as an edge detector, and the diffusivity function g(s) is defined as

g(s) :=







1 (s ≤ 0)

1− exp(−3.315
(s/λ)4 ) (s > 0)

(3)

where λ controls how sensitive the smoothing is to intensity changes. In this work we used

parameter values λ = 3.0, σ = 1.4 and t = 100. The result of the nonlinear diffusion filtering

is denoted by I
′

f (see fig. 1(b)).

Next, an intensity histogram is computed from a part of I
′

f , leaving the bottom 50 percent

and the top 10 percent of the image slices out. For example, if I
′

f has 200 image slices,

the histogram is computed from the slices 101 to 180. The histogram is computed between

intensity values 70 and 220 using histogram slot width of 1. The intensity with the highest

corresponding value in the histogram is selected as the average intensity value for healthy

liver tissue, denoted by α.

I
′

f is then thresholded to create three binary masks M2, M3 and M4 in the same fashion

as above, using equation (1). The thresholds for M2 are a = 17 and b = α and resulting

in a mask that contains regions of tumors with low intensities and some of the healthy

liver tissue (see fig. 1(c)). M3 contains healthy liver tissue, and is created using thresholds

a = 0.82α and b = 1.25α (see fig. 1(d)). M4 is generated with thresholds a = α and b = 240,

corresponding to tumors with high intensities and some of the healthy liver tissue (see fig.

1(e)).

Morphological opening is performed on M3, using a spherical structuring element with

the radius of 1, and from the result the largest connected component is selected using

6-connectivity, resulting in a binary object that is an initial estimate of the liver, denoted

by M
′

3 (see fig. 1(f)). This object has typically many holes, particularly large at locations of

tumors. Next we generate the filled mask Mfill
a , which is initialized as M

′

3. First advancing

from the top of the image volume Mfill
a is filled one slice at a time using M2, so that a slice

k of Mfill
a (i.e. Mfill

a (k)) is changed to

Mfill
a (k)←Mfill

a (k) ∪ [M2(k) ∩Mfill
a (k + 1)]. (4)

After this has been done for slice k, morphological closing is performed on it, using a disk-

shaped structuring element with a radius of 6. Any remaining holes within slice k are filled,
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and morphological opening is performed using the same structuring element as in closing.

Then k is decreased by one and the same operation is repeated. After all the slices have

been processed this way, the whole process is repeated starting from the bottom of the image

volume, advancing in the direction of increasing k (using Mfill
a (k−1) instead of Mfill

a (k+1)

in (4)). The result is a filled mask including all the healthy liver tissue and tumors with

low intensities (see fig. 2(a)). In the same way, M
fill
b (k) is generated for tumors with high

intensities, but using M4 instead of M2 (see fig. 2(b)).

Finally, we extract the tumors from Mfill
a and M

fill
b by removing the healthy liver tissue and

possible background regions from them. For this purpose I
′

g is thresholded with the same

parameter values as when creating M3, a = 0.82α and b = 1.25α, denoting the resulting

mask by Mg. The removal is done in the same way for both masks:

Mfill
a ←Mfill

a ∩ (M1 ∪ ¬Mg), (5)

M
fill
b ←M

fill
b ∩ (M1 ∪ ¬Mg), (6)

(see fig. 2(c)). The resulting volumes are opened with spherical structuring element with

radius of 4. From the resulting binary objects, the ones with size larger than 200 voxels

are selected. These selected objects are the tumor objects for the refinement stage (see fig.

2(d)). However, it was noted that on rare occasions this approach was unable to detect a

tumor at a desired location. For this reason, the set of tumor objects is supplemented by

performing the tumor object extraction again, but this time using M
′

3 instead of Mg as the

healthy liver tissue mask in equations (5) and (6). The resulting objects are added to the

set of tumor objects only if they do not overlap with the existing tumor objects.

Each tumor object is dilated using a spherical structuring element with radius of 5. If the

dilation leads to any part of the object expanding in background region (¬M1) or to overlap

another tumor object, these parts are removed from the dilated object.

3 Refinement stage

3.1 Fuzzy clustering

The generated tumor objects are processed one at a time. The area covered by the dilated

tumor object is extracted from I
′

, and this part of the image is clustered in two classes

with robust fuzzy C-means (RFCM) clustering as proposed by Pham [6]. RFCM includes a

spatial smoothing term to reduce the effect of noise, compared to standard fuzzy c-means

clustering.

When the number of classes is denoted by C, standard FCM minimizes the objective function

JFCM with respect to the membership values u and the centroids v (see Pham [6]):

JFCM =
∑

j∈Ω

C
∑

k=1

u
q
jk||yj − vk||

2 (7)

where Ω is the set of voxel locations in the image volume, q is a parameter that controls

the fuzziness of the classification and is constrained to be greater than one (if q = 1, FCM

is equal to k-means clustering), ujk is the membership value at voxel location j for class

k so that
∑C

k=1 ujk = 1, yj is the image intensity at location j, and vk is the centroid of

class k . The objective function is minimized when high values are assigned to voxels with
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(a) (b)

(c) (d)

(e) (f)

Figure 1 (a) Original image, (b) image filtered with nonlinear diffusion, (c) mask M2 (in-

cluding tumor tissue with low intensities), (d) mask M3 of healthy liver tissue, (e) mask M4

(including tumor tissue with high intensities), (f) M
′

3, which is generated with morphological

opening and extracting the largest connected component from M3

intensities close to the centroid of the particular class, and low values are assigned to voxels

with intensities far from the centroid.
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For spatial smoothing of the resulting membership functions, RFCM simply adds a second

term to the objective function:

JRFCM =
∑

j∈Ω

C
∑

k=1

u
q
jk||yj − gjvk||

2 +
β

2

∑

j∈Ω

C
∑

k=1

u
q
jk

∑

l∈Nj

C
∑

m 6=k

u
q
lm (8)

where Nj represents the set of first order neighbors of voxel j, and β is a weight constant

that determines the smoothness between neighboring voxels in the resulting membership

functions. In this implementation, RFCM was computed using a plug-in for MIPAV (see

McAuliffe et al [4]), implemented by Pierre-Louis Bazin and Dzung L. Pham. The values

used for the variables were q = 2, C = 2, β = 0.1 (this is the normalized value for β, which

is multiplied by the square of intensity range in the image). The resulting membership

functions for the two classes are denoted by µ1 and µ2, and the respective cluster centroids

have the property v1 < v2.

For tumor objects generated from Mfill
a , µ1 is used for directing the geometric deformable

model, but only if |v1 − α| > |v2 − α| (if this condition is not fulfilled, the tumor object

is discarded). In the same way, for objects generated from M
fill
b , µ2 is used, but only if

|v1 − α| < |v2 − α|.

3.2 Geometric deformable model

In a standard geometric deformable model, the evolving curve or surface Γ(t) is embedded

as the zero level set of the higher-dimensional level set function φ(x, t) (see Sethian et al

[9]):

Γ(t) = {x|φ(x, t) = 0} (9)

The evolution is usually prescribed by a partial differential equation of the following form

φt(x, t) = Fprop(x)||∇φ(x, t)|| + Fcurv(x)||∇φ(x, t)|| + ~Fadv(x) · ∇φ(x, t) (10)

where Fprop, Fcurv and ~Fadv are spatially varying speed terms and φt is the partial time

derivative of φ. Fprop is an expansion or contraction speed in the normal direction, Fcurv

is the curvature term that depends on the intrinsic geometry of the surface and ~Fadv is the

advection term, which represents an independent velocity field. (See Han et al [1,2]).

By convention, the level set function φ(x, t) is initialized as a signed distance function to

the initial surface Γ(t = 0) (see Sethian et al [9])

φ(x, t = 0) = ±d (11)

where d is the distance from x to Γ(t = 0), choosing negative values on the inside and

positive on the outside of Γ(t). If φ(x, t) is a signed distance function, it also has a property

||∇φ(x, t)|| = 1. After initialization, Γ(t) is expressed as the zero level set of φ(x, t) as

presented in equation (9). Computing the signed distance function was done with the fast

marching level set method (see Sethian et al [8]).

In this implementation of the geometric deformable model, the two speed terms Fprop and

Fcurv of equation (10) are used. Fprop is a signed pressure force computed from the fuzzy

membership function µ and Fcurv is proportional to the mean curvature κ(x) of the surface.

These choices form the evolution equation to

φt(x, t) = ωRR(x)||∇φ(x, t)|| + ωκκ(x, t)||∇φ(x, t)|| (12)
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where R(x) = 2µ(x) − 1. ωR and ωκ are weights that cause the terms to be emphasized

differently, chosen as ωR = 1 and ωκ = −0.4.

Following the definition of Osher et al [5], the normal ~N of the surface φ(x, t) at point x is

defined as
~N =

∇φ(x, t)

||∇φ(x, t)||
(13)

and the mean curvature κ(x) of the interface is the divergence of the normal

κ(x) = ∇ · ~N = ∇ · (
∇φ(x, t)

||∇φ(x, t)||
) (14)

In this work, the numerical solution of 12 is obtained by simple upwind differencing (see

Sethian et al [9]), also used by Han et al [1].

Topological flexibility of the geometric deformable models is usually considered as a great

advantage but it also means that topological changes are difficult to prevent. This can be a

significant problem when the initial topology of the surface is wished to be preserved. In this

work, as a single connected binary object is desired as the result from each tumor object, we

used a topology-preserving GDM proposed by Han et al [2]. This modification prevents sign

changes at grid points of the level set function if the topology of the object is about to be

altered. The final segmentation of the liver tumor is obtained after the GDM has reached

a steady state by selecting all the points with negative values in φ(x, t) as the segmented

object.

4 Results

From the data of Liver Tumor Segmentation Challenge 08, 20 tumors in 10 images were

used for evaluation. Of these data, 10 tumors from 4 images were used as training data

for the method, and the remaining 10 tumors from 6 images as test data. Using reference

segmentations created by an experienced radiologist and confirmed by another radiologist,

five measures were computed from each segmentation generated by the proposed method:

volumetric overlap error (%), relative absolute volume difference (%), average symmetric

surface distance (mm), RMS symmetric surface distance (mm) and maximum symmetric

surface distance (mm). These measures are described in more detail on the Liver Tumor

Segmentation Challenge 08 website (see http://lts08.bigr.nl/).

The evaluation measures are presented in table 1 for both training and test data. For

interpreting the results of the evaluation we categorize the results based on their overlap

error. When the overlap error is smaller than 67%, a segmentation is considered successful

and if the measure is smaller than 50%, a segmentation is considered good. Using this

categorization, out of the total of 20 segmentations 17 are considered successful and 14

good. In table 2 the averages and standard deviations of the evaluation measures are listed

for different categories.

From table 2 can be noted that for the good segmentations, the average measures have

excellent values with small standard deviations. However, when including the remaining

results the average values deteriorate substantially. This can be considered as evidence of

good accuracy but lack of robustness of the method. Table 1 also shows, that the performance

of the method varied largely between images. For example for the segmentations of image

IMG04, which was part of the training data set and included 4 tumors, corresponding to



7

(a) (b)

(c) (d)

(e) (f)

Figure 2 Filled masks (a) Mfill
a and (b) M

fill
b , (c) M

fill
b with healthy liver tissue and

background removed, (d) tumor candidate objects, (e) fuzzy segmentation class membership

µ2, (f) segmentation result

40% of the training data, the method generated outstanding results for all segmentations.

But for images such as IMG05 including 3 tumors in the test data, all the results were quite

poor.
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Table 1 Results of the evaluation, where the segmentation of the proposed method was

compared to a reference segmentation. The first ten cases were used as training data and

last ten as test data.

Tumor ID Overlap

Error

Volume

Difference

Ave. Surf.

Dist.

RMS Surf.

Dist.

Max. Surf.

Dist.

(%) (%) (mm) (mm) (mm)

IMG01 L1 51.40 49.72 4.10 5.29 17.02

IMG01 L2 37.96 37.77 1.36 1.65 5.31

IMG02 L1 41.70 39.80 1.66 2.04 8.12

IMG02 L2 23.63 20.24 0.82 1.29 5.85

IMG02 L3 95.16 95.16 7.06 7.44 12.49

IMG03 L1 42.93 36.07 1.05 1.56 6.26

IMG04 L1 18.26 12.95 1.37 1.84 8.29

IMG04 L2 9.79 2.59 0.35 0.60 3.10

IMG04 L3 12.44 7.88 0.86 1.37 8.75

IMG04 L4 15.52 11.54 0.80 1.47 8.30

IMG05 L1 62.10 60.28 6.92 10.42 27.23

IMG05 L2 43.65 39.03 1.70 2.17 5.26

IMG05 L3 68.38 124.63 8.27 12.64 39.59

IMG06 L1 39.75 29.51 1.08 1.30 3.54

IMG06 L2 88.25 750.87 14.69 19.40 48.35

IMG07 L1 51.04 33.41 13.20 21.61 81.70

IMG07 L2 31.21 10.44 1.49 2.27 12.34

IMG08 L1 36.55 28.15 4.43 5.79 19.11

IMG09 L1 27.17 9.70 0.89 1.27 6.11

IMG10 L1 25.17 25.08 1.35 1.82 7.46

The most common problem in the segmentations was the rough segmentation result including

parts of the image outside the liver. This occurred with tumors IMG05 03, IMG06 L2 (see

figure 3(e)), IMG07 L1 (see figure 3(f)) and IMG08 01. Another notable problem was the

rough segmentation result lacking a significant part of the tumor area, which happened

with tumors IMG01 L1, IMG02 L3 and IMG05 L1 (see figure 3(d)). The fuzzy clustering

and geometric deformable model worked expectedly in all cases. Examples of segmentation

results are shown in figure 3.

The test data evaluation results were given points in Liver Tumor Segmentation Challenge

08, 100 points being the maximum for an exact match with the reference segmentation. For

each evaluation metric a reference value from segmentation performed by independent users

was assigned a score of 90. These reference values were

1. Volumetric overlap error [%] 12.94

2. Relative absolute volume difference [%] 9.64

3. Average symmetric surface distance [mm] 0.40

4. RMS symmetric surface distance [mm] 0.72

5. Maximum symmetric surface distance [mm] 4.0
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Table 2 Average values and standard deviations (average ± std) of evaluation measures

in seven different categories: successful segmentations of training data (9 cases), all seg-

mentations of training data (10 cases), successful segmentations of test data (8 cases), all

segmentations of test data (10 cases), all good segmentations (14 cases), all successful seg-

mentations (17 cases), and all segmentations (20 cases). Segmentations of tumors with IDs

IMG02 L3, IMG05 L3 and IMG06 L1 were not included in the successful segmentations,

since their overlap error was greater than 67%. In addition to these three, segmentations of

tumors IMG01 L1, IMG05 L1 and IMG07 L1 were not included in the good segmentations,

since their overlap error was greater than 50%.

Data Overlap Error Volume

Difference

Ave. Surf.

Dist.

RMS Surf.

Dist.

Max. Surf.

Dist.

(%) (%) (mm) (mm) (mm)

Training (s) 28.18 ± 15.41 24.28 ± 16.79 1.37 ± 1.09 1.90 ± 1.33 7.89 ± 3.89

Training (a) 34.88 ± 25.69 31.37 ± 27.44 1.94 ± 2.07 2.46 ± 2.16 8.35 ± 3.94

Test (s) 39.58 ± 12.51 29.45 ± 16.17 3.88 ± 4.31 5.83 ± 7.11 20.34 ± 26.07

Test (a) 47.33 ± 20.26 111.11 ± 227.22 5.40 ± 5.20 7.87 ± 7.76 25.07 ± 25.14

Good (70%) 28.98 ± 11.82 22.20 ± 13.04 1.37 ± 0.96 1.89 ± 1.2 7.7 ± 4.04

Succ. (85%) 33.55 ± 14.89 26.72 ± 16.20 2.55 ± 3.22 3.75 ± 5.20 13.75 ± 18.60

All (100%) 41.10 ± 23.40 71.24 ± 162.74 3.67 ± 4.24 5.16 ± 6.20 16.71 ± 19.50

The points were assigned by using linear interpolation or extrapolation between the two

points specified above, with a minimum value of zero and rounded to the nearest integer.

The points received from segmentations of the test data set were used to compare method

performance in the competition. The method received an average of 48 points for the test

data. Points for the training data segmentations were higher, with an average of 69 points.

The points are listed in table 3.

From the table 3 can be seen that the method receives substantially lower points on average

for surface distance measures than overlap error or volume difference. This is believed to be

caused by the same problem as noted earlier: the method and more specifically the rough

segmentation stage either misses a significant part of the tumor or includes parts of the

image outside the liver. This way, the segmentation is relatively good for most part of the

tumor, but the surface distances become large because of inaccuracies at a specific location.
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Table 3 Points of evaluation, when an average reference manual segmentation received 90

points. The points from the test data (last 10 cases) were used to compare the method to

other participants in the Liver Tumor Segmentation Challenge 08.

Tumor ID Overlap

Error

Volume

Differ-

ence

Ave.

Surf.

Dist.

RMS

Surf.

Dist.

Max.

Surf.

Dist.

Total

Score

IMG01 L1 60 48 0 27 57 38

IMG01 L2 71 61 66 77 87 72

IMG02 L1 68 59 59 72 80 68

IMG02 L2 82 79 80 82 85 82

IMG02 L3 26 1 0 0 69 19

IMG03 L1 67 63 74 78 84 73

IMG04 L1 86 87 66 74 79 78

IMG04 L2 92 97 91 92 92 93

IMG04 L3 90 92 79 81 78 84

IMG04 L4 88 88 80 80 79 83

Training data

average

73 68 60 66 79 69

IMG05 L1 52 37 0 0 32 24

IMG05 L2 66 60 57 70 87 68

IMG05 L3 47 0 0 0 1 10

IMG06 L1 69 69 73 82 91 77

IMG06 L2 32 0 0 0 0 6

IMG07 L1 61 65 0 0 0 25

IMG07 L2 76 89 62 68 69 73

IMG08 L1 72 71 0 19 52 43

IMG09 L1 79 90 78 82 85 83

IMG10 L1 81 74 66 75 81 75

Test data

average

64 56 34 40 50 48

Total average 68 62 47 53 64 59

5 Discussion

The proposed method produced very good results for a majority of the evaluation data.

These were obtained when the rough segmentation stage was successful, indicating that the

chosen approach for the refinement stage using fuzzy clustering and a geometric deformable

model is able to generate reliably accurate results. However, the rough segmentation stage

suffers currently from lack of robustness, which degrades the overall performance of the

method. In the future we plan to combine the proposed tumor segmentation method with

an accurate segmentation of the liver. This should improve the results dramatically for

segmentations such as the ones that advanced to parts of the image outside the liver in the

conducted evaluation.

The fuzzy clustering worked expectedly in all cases, but in the future it might be useful
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to look into to the possibility of clustering data based on their absolute deviation from the

average healthy tissue intensity, rather than using it directly on the intensity values. This

way, tumors with low and high intensities would not be extracted separately, and a single

tumor segmentation might include segments of the image with both low and high intensities.
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(a) (b)

(c) (d)

(e) (f)

Figure 3 Examples of segmentations overlaid on image slices (a) IMG04 L2 and

IMG04 L3, (b) IMG10 L1, (c) IMG02 L2, (d) IMG05 L1 and IMG05 L2, (e) IMG06 L2

(with overflow to adjacent structure), (f) IMG07 L1 (with overflow to adjacent structure)


