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Abstract

A method for automatic liver tumor segmentation from computer tomography (CT) images
is presented in this paper. Segmentation is an important operation before surgery planning,
and automatic methods offer an alternative to laborious manual segmentation. In addition,
segmentations of automatic methods are reproducible, so they can be reliably evaluated and
they do not depend on the performer of the segmentation. In this work, the segmentation is
performed in two stages. First a rough segmentation of tumors is obtained by simple thresh-
olding and morphological operations. The second stage refines the rough segmentation result
using fuzzy clustering and a geometric deformable model (GDM) that is fitted on the clus-
tering result. The method was evaluated with data provided by Liver Tumor Segmentation
Challenge 08, to which the method also participated. The data included 10 images from

which 20 tumors were segmented. The method showed promising results.
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1 Introduction

Important information of the condition and location of liver structures can be acquired by
accurate image segmentation. Segmentation enables quantitative disease assessment and is
an important step before surgery planning. Other purposes include research in pathology
prediction by determining morphological and structural changes or deformations, multi-
modality fusion and registration, navigation and image-guided surgery, 3D visualization
and interactive segmentation. Manual segmentation is often laborious, inaccurate and the
result varies strongly dependent on the observer. Manual segmentation is also not reliably
reproducible. These shortcomings have created a demand for automatic and semi-automatic

segmentation methods, which should be fast, accurate and robust. (See Pham et al [7]).

In the task of liver tumor segmentation from CT images, anatomical variance combined
with limited resolution and random noise of the imaging method are common problems
that require task-specific algorithms. Typically for medical images, the volumes are three-
dimensional which complicates the task even further compared to simple two-dimensional

images.

A novel method for automatic liver tumor segmentation from CT images is proposed in this
paper. The segmentation is performed in two stages. First a rough segmentation of the
tumors is obtained by simple thresholding and morphological operations. The second stage
refines the rough segmentation result using a fuzzy clustering approach that incorporates
a spatial smoothing term to the regular fuzzy c-means (FCM) clustering. The final tumor
segmentation is obtained by fitting a geometric deformable model (GDM) on the membership
function generated by the clustering. The approach of the refinement stage is similar to the

one used for cortical reconstruction from magnetic resonance images by Han et al [1].

The method was evaluated using data provided by Liver Tumor Segmentation Challenge 08
(see http://1ts08.bigr.nl/index.php), to which the method also participated. All parameter
values used by the method are chosen to optimize performance for the training set of the
evaluation data. After this introduction the second chapter describes the rough segmen-
tation, followed by a description of the refinement stage in the third chapter. The fourth
chapter presents results of the evaluation, and the fifth chapter concludes the document with

a discussion.
2 Rough Segmentation

Starting with a raw CT image volume I (see fig. 1(a)), a constant with the value of 1000
is subtracted from the intensity values, resetting the scale so that voxels corresponding to
air are assigned approximately an intensity value of —1000. The result of the subtraction
is denoted by I ". From [ /, three volumes are generated: the first one is a binary mask M;
that is obtained by thresholding

1, when a < I'(x) < b
My (x) = (1)
0, otherwise

where x = [x1, 2, 3] represents a single point in the image volume and the parameters are
chosen as a = —20 and b = 240. From M, all holes with size of less than 10 are filled, and



the resulting mask covers all parts of the image [ " with healthy liver tissue as well as all

liver tumor tissue. The complement of M is considered background.

The second volume is generated by filtering I ' using a Gaussian filter with standard deviation
of 1.0 in all three coordinate directions (x1,x2,23). The result is denoted by T ;. The
third volume is generated by filtering I " one slice at a time using nonlinear diffusion (see
Weickert [10]). Nonlinear diffusion smooths the image but preserves boundaries and produces
piecewise constant regions, and it was used in a method for liver segmentation from CT

images by Lamecker et al [3].

Let I(x) be the original image, then the filtered image F(x,t) is obtained by solving the
partial differential equation
O F = div g(|VF,|*)VF) (2)

when F(x,0) = I(x) and F, is the result of Gaussian smoothing of F with standard deviation
o. The term |VF,|? acts as an edge detector, and the diffusivity function g(s) is defined as
o=yt =Y ®)
1-— exp(%) (s>0)
where A controls how sensitive the smoothing is to intensity changes. In this work we used
parameter values A = 3.0, 0 = 1.4 and ¢ = 100. The result of the nonlinear diffusion filtering
is denoted by I} (see fig. 1(b)).

Next, an intensity histogram is computed from a part of I}, leaving the bottom 50 percent
and the top 10 percent of the image slices out. For example, if I} has 200 image slices,
the histogram is computed from the slices 101 to 180. The histogram is computed between
intensity values 70 and 220 using histogram slot width of 1. The intensity with the highest
corresponding value in the histogram is selected as the average intensity value for healthy

liver tissue, denoted by .

I} is then thresholded to create three binary masks Ms, M3 and M, in the same fashion
as above, using equation (1). The thresholds for My are a = 17 and b = « and resulting
in a mask that contains regions of tumors with low intensities and some of the healthy
liver tissue (see fig. 1(c)). Ms contains healthy liver tissue, and is created using thresholds
a = 0.82c and b = 1.25« (see fig. 1(d)). My is generated with thresholds a = « and b = 240,

corresponding to tumors with high intensities and some of the healthy liver tissue (see fig.

1(e)).

Morphological opening is performed on Ms, using a spherical structuring element with
the radius of 1, and from the result the largest connected component is selected using
6-connectivity, resulting in a binary object that is an initial estimate of the liver, denoted
by Mé (see fig. 1(f)). This object has typically many holes, particularly large at locations of
tumors. Next we generate the filled mask M J il which is initialized as Mé First advancing
from the top of the image volume MJ % is filled one slice at a time using My, so that a slice
k of MJ (i.e. MJ"(k)) is changed to

Mgz”(k’)<—M({Z”(k’)u[Mg(k’)ﬂM({Z”(k"i_l)] (4)

After this has been done for slice k, morphological closing is performed on it, using a disk-

shaped structuring element with a radius of 6. Any remaining holes within slice k are filled,



and morphological opening is performed using the same structuring element as in closing.
Then k£ is decreased by one and the same operation is repeated. After all the slices have
been processed this way, the whole process is repeated starting from the bottom of the image
volume, advancing in the direction of increasing k (using MJ (k— 1) instead of M (k+1)
in (4)). The result is a filled mask including all the healthy liver tissue and tumors with
low intensities (see fig. 2(a)). In the same way, MJ () is generated for tumors with high
intensities, but using My instead of My (see fig. 2(b)).

Finally, we extract the tumors from M/* and M, lf i by removing the healthy liver tissue and
possible background regions from them. For this purpose I; is thresholded with the same
parameter values as when creating M3, a = 0.82a and b = 1.25q, denoting the resulting

mask by M. The removal is done in the same way for both masks:
MIH — MU A (M U M), (5)
MM = MM A (MU =M), (6)

(see fig. 2(c)). The resulting volumes are opened with spherical structuring element with
radius of 4. From the resulting binary objects, the ones with size larger than 200 voxels
are selected. These selected objects are the tumor objects for the refinement stage (see fig.
2(d)). However, it was noted that on rare occasions this approach was unable to detect a
tumor at a desired location. For this reason, the set of tumor objects is supplemented by
performing the tumor object extraction again, but this time using Mé instead of M, as the
healthy liver tissue mask in equations (5) and (6). The resulting objects are added to the

set of tumor objects only if they do not overlap with the existing tumor objects.

Each tumor object is dilated using a spherical structuring element with radius of 5. If the
dilation leads to any part of the object expanding in background region (—Mj) or to overlap

another tumor object, these parts are removed from the dilated object.
3 Refinement stage
3.1 Fuzzy clustering

The generated tumor objects are processed one at a time. The area covered by the dilated
tumor object is extracted from I ', and this part of the image is clustered in two classes
with robust fuzzy C-means (RFCM) clustering as proposed by Pham [6]. RFCM includes a
spatial smoothing term to reduce the effect of noise, compared to standard fuzzy c-means

clustering.

When the number of classes is denoted by C', standard FCM minimizes the objective function

Jroar with respect to the membership values w and the centroids v (see Pham [6]):

c
Tron =2 3 ufilly; = vell? (7)

jeQ k=1
where () is the set of voxel locations in the image volume, ¢ is a parameter that controls
the fuzziness of the classification and is constrained to be greater than one (if ¢ = 1, FCM
is equal to k-means clustering), u;; is the membership value at voxel location j for class
k so that 2521 u;, = 1, y; is the image intensity at location j, and vj is the centroid of

class k. The objective function is minimized when high values are assigned to voxels with



Figure 1 (a) Original image, (b) image filtered with nonlinear diffusion, (c¢) mask My (in-
cluding tumor tissue with low intensities), (d) mask Ms of healthy liver tissue, (e) mask My
(including tumor tissue with high intensities), (f) ]\/[3:, which is generated with morphological

opening and extracting the largest connected component from Ms

intensities close to the centroid of the particular class, and low values are assigned to voxels

with intensities far from the centroid.



For spatial smoothing of the resulting membership functions, RFCM simply adds a second

term to the objective function:

c c c
JrroM = Z ZU?kHyj — gjurll* + gz Zuj‘k Z Z“?m (8)

jeQk=1 JEQEk=1  IEN; m#k
where N; represents the set of first order neighbors of voxel j, and 3 is a weight constant
that determines the smoothness between neighboring voxels in the resulting membership
functions. In this implementation, RFCM was computed using a plug-in for MIPAV (see
McAuliffe et al [4]), implemented by Pierre-Louis Bazin and Dzung L. Pham. The values
used for the variables were ¢ = 2, C'= 2, 3 = 0.1 (this is the normalized value for /3, which
is multiplied by the square of intensity range in the image). The resulting membership
functions for the two classes are denoted by p1 and ps, and the respective cluster centroids

have the property v < vs.

For tumor objects generated from M({ 44y is used for directing the geometric deformable
model, but only if |v; — «] > |v2 — | (if this condition is not fulfilled, the tumor object
is discarded). In the same way, for objects generated from le i”, 1o is used, but only if

lv1 — o] < v —al.
3.2 Geometric deformable model

In a standard geometric deformable model, the evolving curve or surface I'(¢) is embedded
as the zero level set of the higher-dimensional level set function ¢(x,t) (see Sethian et al
[9)):

I(t) = {x|¢(x, 1) = 0} 9)

The evolution is usually prescribed by a partial differential equation of the following form
(%, 1) = Frop ()| [V, )] + Fruro ()|IVO(x, )| + Faao (%) - V() (10)

where Fypop, Foyry and ﬁadv are spatially varying speed terms and ¢; is the partial time
derivative of ¢. Fj.op is an expansion or contraction speed in the normal direction, Feypy
is the curvature term that depends on the intrinsic geometry of the surface and Flyy is the

advection term, which represents an independent velocity field. (See Han et al [1,2]).

By convention, the level set function ¢(x,t) is initialized as a signed distance function to
the initial surface T'(t = 0) (see Sethian et al [9])

P(x,t =0) = +d (11)

where d is the distance from x to I'(t = 0), choosing negative values on the inside and
positive on the outside of T'(¢). If ¢(x,t) is a signed distance function, it also has a property
[|[Vo(x,t)|| = 1. After initialization, I'(¢) is expressed as the zero level set of ¢(x,t) as
presented in equation (9). Computing the signed distance function was done with the fast

marching level set method (see Sethian et al [8]).

In this implementation of the geometric deformable model, the two speed terms Fj,., and
Feuro of equation (10) are used. Fj,op is a signed pressure force computed from the fuzzy
membership function p and Fiyy, is proportional to the mean curvature x(x) of the surface.

These choices form the evolution equation to

¢ (x,t) = wrR(x)||Vo(x, t)|| + wrk(x,1)[[Vo(x, 1)]] (12)



where R(x) = 2u(x) — 1. wr and w,, are weights that cause the terms to be emphasized

differently, chosen as wrp = 1 and w,, = —0.4.

Following the definition of Osher et al [5], the normal N of the surface ¢(x,t) at point x is

defined as
N2 V(b(X, t)

~ Vx|

and the mean curvature k(x) of the interface is the divergence of the normal

(13)

B o Vo(x,t)
") =VN =V (e

In this work, the numerical solution of 12 is obtained by simple upwind differencing (see

Sethian et al [9]), also used by Han et al [1].
Topological flexibility of the geometric deformable models is usually considered as a great

) (14)

advantage but it also means that topological changes are difficult to prevent. This can be a
significant problem when the initial topology of the surface is wished to be preserved. In this
work, as a single connected binary object is desired as the result from each tumor object, we
used a topology-preserving GDM proposed by Han et al [2]. This modification prevents sign
changes at grid points of the level set function if the topology of the object is about to be
altered. The final segmentation of the liver tumor is obtained after the GDM has reached
a steady state by selecting all the points with negative values in ¢(x,t) as the segmented

object.
4 Results

From the data of Liver Tumor Segmentation Challenge 08, 20 tumors in 10 images were
used for evaluation. Of these data, 10 tumors from 4 images were used as training data
for the method, and the remaining 10 tumors from 6 images as test data. Using reference
segmentations created by an experienced radiologist and confirmed by another radiologist,
five measures were computed from each segmentation generated by the proposed method:
volumetric overlap error (%), relative absolute volume difference (%), average symmetric
surface distance (mm), RMS symmetric surface distance (mm) and maximum symmetric
surface distance (mm). These measures are described in more detail on the Liver Tumor
Segmentation Challenge 08 website (see http://1ts08.bigr.nl/).

The evaluation measures are presented in table 1 for both training and test data. For
interpreting the results of the evaluation we categorize the results based on their overlap
error. When the overlap error is smaller than 67%, a segmentation is considered successful
and if the measure is smaller than 50%, a segmentation is considered good. Using this
categorization, out of the total of 20 segmentations 17 are considered successful and 14
good. In table 2 the averages and standard deviations of the evaluation measures are listed

for different categories.

From table 2 can be noted that for the good segmentations, the average measures have
excellent values with small standard deviations. However, when including the remaining
results the average values deteriorate substantially. This can be considered as evidence of
good accuracy but lack of robustness of the method. Table 1 also shows, that the performance
of the method varied largely between images. For example for the segmentations of image

IMGO4, which was part of the training data set and included 4 tumors, corresponding to



() (d)
(e) (f)
Figure 2 Filled masks (a) M and (b) ]V[,fi”, (c) ]\Jg‘m with healthy liver tissue and

background removed, (d) tumor candidate objects, (e) fuzzy segmentation class membership

wa, (f) segmentation result

40% of the training data, the method generated outstanding results for all segmentations.
But for images such as IMGO05 including 3 tumors in the test data, all the results were quite

poor.



Table 1 Results of the evaluation, where the segmentation of the proposed method was
compared to a reference segmentation. The first ten cases were used as training data and

last ten as test data.

Tumor ID Overlap Volume Ave. Surf.  RMS Surf. Max. Surf.
Error Difference Dist. Dist. Dist.
(%) (%) (mm) (mm) (mm)
IMGO1_L1 51.40 49.72 4.10 5.29 17.02
IMGO1_L2 37.96 37.77 1.36 1.65 5.31
IMGO02_L1 41.70 39.80 1.66 2.04 8.12
IMGO02_L2 23.63 20.24 0.82 1.29 5.85
IMG02_L3 95.16 95.16 7.06 7.44 12.49
IMGO03_L1 42.93 36.07 1.05 1.56 6.26
IMGO04_L1 18.26 12.95 1.37 1.84 8.29
IMGO04_1.2 9.79 2.59 0.35 0.60 3.10
IMGO04_L3 12.44 7.88 0.86 1.37 8.75
IMGO04_ L4 15.52 11.54 0.80 1.47 8.30
IMGO5_L1 62.10 60.28 6.92 10.42 27.23
IMGO05_L2 43.65 39.03 1.70 2.17 5.26
IMGO05_L3 68.38 124.63 8.27 12.64 39.59
IMGO06_L1 39.75 29.51 1.08 1.30 3.54
IMGO06_L2 88.25 750.87 14.69 19.40 48.35
IMGO7_L1 51.04 33.41 13.20 21.61 81.70
IMGO07_L2 31.21 10.44 1.49 2.27 12.34
IMGO08_L1 36.55 28.15 4.43 5.79 19.11
IMGO09_L1 27.17 9.70 0.89 1.27 6.11
IMG10_L1 25.17 25.08 1.35 1.82 7.46

The most common problem in the segmentations was the rough segmentation result including
parts of the image outside the liver. This occurred with tumors IMG05_03, IMG06_L2 (see
figure 3(e)), IMGO7_L1 (see figure 3(f)) and IMGO08_01. Another notable problem was the
rough segmentation result lacking a significant part of the tumor area, which happened
with tumors IMGO1_L1, IMG02_L3 and IMGO05_L1 (see figure 3(d)). The fuzzy clustering
and geometric deformable model worked expectedly in all cases. Examples of segmentation

results are shown in figure 3.

The test data evaluation results were given points in Liver Tumor Segmentation Challenge
08, 100 points being the maximum for an exact match with the reference segmentation. For
each evaluation metric a reference value from segmentation performed by independent users

was assigned a score of 90. These reference values were

1. Volumetric overlap error [%] 12.94

2. Relative absolute volume difference [%] 9.64
3. Average symmetric surface distance [mm] 0.40
4. RMS symmetric surface distance [mm] 0.72

5. Maximum symmetric surface distance [mm] 4.0



Table 2 Awverage values and standard deviations (average + std) of evaluation measures
in seven different categories: successful segmentations of training data (9 cases), all seg-
mentations of training data (10 cases), successful segmentations of test data (8 cases), all
segmentations of test data (10 cases), all good segmentations (14 cases), all successful seg-
mentations (17 cases), and all segmentations (20 cases). Segmentations of tumors with IDs
IMGO02_-L3, IMGO5_L3 and IMGO6_L1 were not included in the successful segmentations,
since their overlap error was greater than 67%. In addition to these three, segmentations of
tumors IMGOI_L1, IMG05_-L1 and IMGO7-L1 were not included in the good segmentations,

since their overlap error was greater than 50%.

Data Overlap Error Volume Ave. Surf. RMS Surf. Max. Surf.
Difference Dist. Dist. Dist.
(%) (%) (mm) (mm) (mm)
Training (s) 28.18 £ 15.41 24.28 + 16.79 1.37 £ 1.09 1.90 + 1.33 7.89 £+ 3.89
Training (a) 34.88 £+ 25.69 31.37 £ 27.44 1.94 + 2.07 2.46 + 2.16 8.35 + 3.94
Test (s) 39.58 + 12.51 29.45 + 16.17 3.88 4+ 4.31 5.83 + 7.11  20.34 £+ 26.07
Test (a) 47.33 £ 20.26 111.11 £ 227.22 5.40 £+ 5.20 7.87 £ 7.76 25.07 £ 25.14
Good (70%) 28.98 £+ 11.82 22.20 £+ 13.04 1.37 £ 0.96 1.89 £ 1.2 7.7 + 4.04
Suce. (85%) | 33.55 + 14.89 26.72 + 16.20 2.55 4+ 3.22 3.75 £ 520  13.75 £+ 18.60
All (100%) 41.10 £ 23.40 71.24 + 162.74 3.67 £ 4.24 5.16 4+ 6.20 16.71 4+ 19.50

The points were assigned by using linear interpolation or extrapolation between the two
points specified above, with a minimum value of zero and rounded to the nearest integer.
The points received from segmentations of the test data set were used to compare method
performance in the competition. The method received an average of 48 points for the test
data. Points for the training data segmentations were higher, with an average of 69 points.

The points are listed in table 3.

From the table 3 can be seen that the method receives substantially lower points on average
for surface distance measures than overlap error or volume difference. This is believed to be
caused by the same problem as noted earlier: the method and more specifically the rough
segmentation stage either misses a significant part of the tumor or includes parts of the
image outside the liver. This way, the segmentation is relatively good for most part of the

tumor, but the surface distances become large because of inaccuracies at a specific location.
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Table 3 Points of evaluation, when an average reference manual segmentation received 90
points. The points from the test data (last 10 cases) were used to compare the method to

other participants in the Liver Tumor Segmentation Challenge 08.

Tumor ID Overlap Volume Ave. RMS Max. Total
Error Differ- Surf. Surf. Surf. Score
ence Dist. Dist. Dist.

IMGO1_L1 60 48 0 27 57 38
IMGO1_L2 71 61 66 7 87 72
IMGO02_L1 68 59 59 72 80 68
IMGO02_L2 82 79 80 82 85 82
IMG02_L3 26 1 0 0 69 19
IMGO03_L1 67 63 74 78 84 73
IMGO04_L1 86 87 66 74 79 78
IMGO04_L2 92 97 91 92 92 93
IMGO04_L3 90 92 79 81 78 84
IMGO04_ 14 88 88 80 80 79 83

Training data 73 68 60 66 79 69

average
IMGO05_L1 52 37 0 0 32 24
IMGO05_L2 66 60 57 70 87 68
IMGO05_L3 47 0 0 0 1 10
IMGO06_L1 69 69 73 82 91 7
IMGO06_L2 32 0 0 0 0 6
IMGOT7_L1 61 65 0 0 0 25
IMGOT7_L2 76 89 62 68 69 73
IMGO08_L1 72 71 0 19 52 43
IMGO09_L1 79 90 78 82 85 83
IMG10_L1 81 74 66 75 81 75
Test data 64 56 34 40 50 48
average
Total average 68 62 47 53 64 59

5 Discussion

The proposed method produced very good results for a majority of the evaluation data.
These were obtained when the rough segmentation stage was successful, indicating that the
chosen approach for the refinement stage using fuzzy clustering and a geometric deformable
model is able to generate reliably accurate results. However, the rough segmentation stage
suffers currently from lack of robustness, which degrades the overall performance of the
method. In the future we plan to combine the proposed tumor segmentation method with
an accurate segmentation of the liver. This should improve the results dramatically for
segmentations such as the ones that advanced to parts of the image outside the liver in the

conducted evaluation.

The fuzzy clustering worked expectedly in all cases, but in the future it might be useful
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to look into to the possibility of clustering data based on their absolute deviation from the
average healthy tissue intensity, rather than using it directly on the intensity values. This
way, tumors with low and high intensities would not be extracted separately, and a single

tumor segmentation might include segments of the image with both low and high intensities.
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Figure 3 FEzamples of segmentations overlaid on image slices (a) IMGO04-L2 and
IMG04-L3, (b) IMG10-L1, (¢) IMG02_L2, (d) IMGO5_L1 and IMGO5_L2, (e) IMGO6_L2
(with overflow to adjacent structure), (f) IMGO7-L1 (with overflow to adjacent structure)



