
A Label Geometry Image Filter
for Multiple Object Measurement 1

Release 0.00

Dirk Padfield, James Miller

August 14, 2008

GE Global Research, One Research Circle, Niskayuna, NY, 12309
{padfield,millerjv}@research.ge.com

Abstract

The itkLabelGeometryImageFilter is a new ITK filter that enables the measurement of geometric
features of labeled objects. It calculates features similar to the “regionprops” command of Matlab. It
is related to the itkLabelStatisticsImageFilter in that both filters measure features of labeled masks. It
differs, however, in that it measures geometric features ofthe objects themselves rather than statistics
of image intensities under the masks defined by the objects. This document describes the mathematical
background of the geometric features measured by this filterand describes the framework of the code,
which is structured to enable easy expandability as new object features are desired.

Contents

1 Introduction 2

2 Image Moments 2

3 Hyper-Ellipsoid Fitting 6
3.1 Covariance Matrix (ND) . 7
3.2 Eigenvalues and Eigenvectors (ND). 7

4 Calculated Object Features 8
4.1 Volume and Centroid (ND). 8
4.2 Axes Lengths (ND). 8
4.3 Eccentricity (2D) . 8
4.4 Elongation (2D). 8
4.5 Object Orientation (2D). 8
4.6 Bounding Box (ND) . 9
4.7 Oriented Bounding Box Vertices (ND). 9
4.8 Oriented Image Region (ND). 9

1This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health
through the NIH Roadmap for Medical Research, Grant U54 EB005149. Information on the National Centers for Biomedical
Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics.

2

5 Implementation 10
5.1 Implementation Structure. 10
5.2 Inputs and Feature Accessor Methods. 11

6 Conclusions 12

1 Introduction

The itkLabelGeometryImageFilter enables the measurementof geometric features of all objects in a labeled
ND volume. This labeled volume can represent, for instance,a medical image segmented into different
anatomical structures or a microscope image segmented intoindividual cells. The measurement of various
geometric features of these objects can provide additionalinsight into the image.

This filter is closely related to the itkLabelStatisticsImageFilter, which measures statistics of image regions
defined by a labeled mask such as min, max, and mean intensity,intensity standard deviation, and bounding
boxes. The itkLabelGeometryImageFilter, however, measures the geometry of the labeled regions them-
selves. It measures features similar to the “regionprops” command of Matlab. The set of measurements that
it enables along with their definitions are given in Table1. The first set of features in this table are based
solely on the labeled mask itself, whereas the second set, including the integrated intensity and the weighted
centroid, are measured on an intensity image under the labeled mask. While the majority of features are
measured in ND, some are restricted to 2D by definition (theseare explicitly marked as 2D). Much of the
notation this table and other Sections is given in 2D for notational simplicity. The definitions and their
derivations are given in greater detail in Sections4. The features listed in this table represent the set of
currently calculated features, but the framework of the filter is designed so that it can be easily expanded to
measure a wide variety of other features. For example, sincethe calculation of the eigenvalues/eigenvectors
and covariance matrices are already implemented, these measures can be used as the basis for other relevant
calculations.

The rest of this paper is organized as follows. Most of the features currently implemented are based on image
moments, so Section2 gives an overview of the relevant mathematical equations. Section3 introduces the
framework of calculations based on a hyper-ellipsoid fittedto the data, and Section4 describes in detail the
calculation of the object features. Section5 describes some implementation details of the filter and lists the
feature accessor methods currently available. Finally, Section 6 lists the conclusions.

2 Image Moments

Image moments are particular averages of either binary objects (unweighted) or their pixel intensities
(weighted). They are useful to describe objects and form thebuilding blocks of many useful features of
the objects. The definitions below are mostly given for 2D objects but can be directly extended to ND.

For a 2D continuous functionf (x,y), the raw moment of order (p+q) is defined as

Mp,q =
∫ ∞

−∞

∫ ∞

−∞
xpyq f (x,y)dxdy (1)

wherex andy are indices of the first and second dimensions of the function. The discrete counterpart of this

3

Table 1: Definitions of label geometry features.For the shape features, theI implicit in the equations
represents a binary value set to 1 inside the object and 0 outside. For the shape & intensity features, theI
represents an intensity value inside the object and 0 outside. All features are calculated in ND except those
listed as otherwise. Notational clarifications and expanded definitions are given in Section4.

Feature Name Definition
Shape Features (I = binary)
Volume M00

Centroid

[

M10

M00
,

M01

M00

]

Eigenvalues λ1, λ2,...,λN

Eigenvectors [v0 v1 ... vN]
Axes length 4

√
λi , i = 0,...,D-1

Eccentricity (2D)

√

λ1−λ0

λ1

Elongation (2D)
λ1

λ0

Orientation (2D) tan−1

(

v1(1)

v1(0)

)

Bounding box [min(X), max(X), min(Y), max(Y), ...]
Bounding box volume (max(X)-min(X)+1) * (max(Y)-min(Y)+1) * ...
Bounding box size [(max(X)-min(X)+1), (max(Y)-min(Y)+1), ...]
Oriented bounding box verticesBounding box along the major axis of the object
Oriented bounding box volume Bounding box volume in rotated space
Oriented bounding box size Bounding box size in rotated space
Rotation matrix Eigenvectors organized to obey right-hand rule
Shape & Intensity Features (I = intensity)
Integrated Intensity M00

Weighted centroid

[

M10

M00
,

M01

M00

]

4

function is

Mp,q =
Y−1

∑
y=0

X−1

∑
x=0

xpyqI(x,y) (2)

whereI is the discrete image (weighted or unweighted).

Central moments are translationally invariant versions ofthe raw moments. This is achieved by subtract-

ing the centroid

[

M10

M00
,

M01

M00

]

of the function from the indices. For a 2D continuous function, the central

moments are defined as
µp,q =

∫ ∞

−∞

∫ ∞

−∞
(x−x)p(y−y)q f (x,y)dxdy (3)

and the discrete version is

µp,q =
Y−1

∑
y=0

X−1

∑
x=0

(x−x)p(y−y)qI(x,y) (4)

Rather than calculating the raw and central moments separately for an image, the central moments can be
directly derived in terms of the raw moments. For example, in2D

µ00 = M00 (5)

µ01 = 0 (6)

µ10 = 0 (7)

µ11 = M11−xM01 = M11−yM10 (8)

µ20 = M20−xM10 (9)

µ02 = M02−yM01 (10)

Note that the commas separating thep andq have been dropped for notational simplicity. The proof of these
identities for one first order moment (p= 0 ,q= 1), one second order cross moment (p = 1 ,q= 1), and one
second order moment (p = 2 ,q = 0) for the continuous case are given below.

µ01 =
∫ ∫

(x−x)0(y−y)1 f (x,y)dxdy=
∫ ∫

y f(x,y)dxdy−y
∫ ∫

f (x,y)dxdy

= M01−yM00 = M01−
M01

M00
M00 = 0 (11)

µ11 =

∫ ∫

(x−x)1(y−y)1 f (x,y)dxdy=

∫ ∫

(xy−xy−xy+x∗y) f (x,y)dxdy

=

∫ ∫

xy f(x,y)dydy−x
∫ ∫

y f(x,y)dxdy−y
∫ ∫

x f(x,y)dxdy+x∗y
∫ ∫

f (x,y)dxdy

= M11−
M10

M00
M01−

M01

M00
M10+

M10

M00

M01

M00
M00 = M11−xM01 = M11−yM10 (12)

µ20 =

∫ ∫

(x−x)2(y−y)0 f (x,y)dxdy=

∫ ∫

(x2−2xx+x2) f (x,y)dxdy

=

∫ ∫

x2 f (x,y)dxdy−2x
∫ ∫

x f(x,y)dxdy+x2
∫ ∫

f (x,y)dxdy

= M20−2
M10

M00
M10+

(

M10

M00

)2

M00 = M20−xM10 (13)

5

The rest of the equations above follow from similar derivations.

A particularly useful form of moments are the normalized second order central moments. In 2D, these are
given by

µ′20 =
µ20

µ00
=

M20

M00
−x2 (14)

µ′02 =
µ02

µ00
=

M02

M00
−y2 (15)

µ′11 =
µ11

µ00
=

M11

M00
−x∗y (16)

The covariance matrix consists of the normalized second order central moments organized as entries in a
matrix. In 2D, this becomes

[

µ′20 µ′11
µ′11 µ′02

]

(17)

This can be generalized to ND. Regardless of the dimension, each entry in this matrix represents the prod-
uct of two elements (hence, it is second order). The dimension D of the moment determines the matrix
size as D*D. To generalize to ND, we introduce the notationM D

N (v1,v2, ...,vN) for raw moments and
C ′D

N(v1,v2, ...,vN) for normalized central moments, whereD is the dimension,N is the order, and the values
in the parentheses separated by commas represent the indices of the dimensions that are turned on (thus,
the number of values must be equal toN). For example,µ′00 in the previous notation isC ′2

0(), andµ′020

is C ′3
2(1,1). This notation is more convenient for ND because it doesn’t require the explicit listing of a

subscript value for each dimension as inµ′020 in 3D. This notation is used in Algorithm 1 to calculate the
normalized second order central moments.

Algorithm 1 ND Normalized Second Moment Calculation.D = image dimension. N = moments order.
1: for i = 0:D-1 do
2: for j = 0:D-1 do

3: C ′D
2 (i, j) =

M D
2 (i, j)

M D
0 ()

− M D
1 (i)

M D
0 ()

∗ M D
1 (j)

M D
0 ()

4: if i == j then

5: C ′D
2 (i, j) = C ′D

2 (i, j)+
1
12

6: end if
7: end for
8: end for

Since the resulting matrix is symmetric, in practice only half of the values need to calculated.

This algorithm simplifies the task of calculating second order moments in ND. Using this algorithm, the
covariance matrix of the normalized second order central moments becomes (using the simpler notation
using subscript indices)

6





µ′200 µ′110 µ′101
µ′110 µ′020 µ′011
µ′101 µ′011 µ′002



 (18)

Notice in line 5 of Algorithm 1 that a constant is added when both elements of the second order moment are
the same. This constant represents the normalized second order central moment of a pixel. This is required
because the measurements are based on discrete pixels rather than continuous values. The normalized
second order central moment of a pixel with unit length of a binary image can be found as (wherep means
a pixel)

M00(p) =
∫ 1

0

∫ 1

0
dxdy=

∫ 1

0
[x]10 dy=

∫ 1

0
dy= [y]10 = 1

M10(p) =
∫ 1

0
xdx=

[

1
2

x2
]1

0
=

1
2

M11(p) =

∫ 1

0

∫ 1

0
xydxdy=

∫ 1

0
y

[

1
2

x2
]1

0
dy=

1
2

[

1
2

y2
]1

0
=

1
4

M20(p) =
∫ 1

0

∫ 1

0
x2dxdy=

[

1
3

x3
]1

0
=

1
3

x(p) =
M10(p)

M00(p)
=

1
2

=
M01(p)

M00(p)
= y(p)

µ′11(p) =
M11(p)

M00(p)
−x(p)∗y(p) = 0 (19)

µ′20(p) =
M20(p)

M00(p)
−x2(p) =

1
12

(20)

Thus, the second order cross moment is 0, and the second ordermoment is
1
12

. A straightforward analysis

holds for other dimensions. This explains why it is necessary to add a scalar
1
12

to each normalized second

order central moment when the indices are the same dimensionand it is not necessary to add anything for
normalized second order central moments consisting of cross moments.

In the next section, these moment calculations will be used as the foundation for many of the object features.

3 Hyper-Ellipsoid Fitting

Several useful features are calculated based on the features of a hyper-ellipsoid fit to each object. A hyper-
ellipsoid can be fit using the eigenvalues/eigenvectors, which in turn depend upon the measurement of the
covariance matrix.

A 2D ellipse is shown in Figure1. An ellipse is defined as a set of points, the sum of whose distances from
the foci is a constant, 2a, where 2a is the full length of the ellipse on the x-axis. With an ellipse centered
on the origin and aligned with the x/y-axes, the foci of the ellipse are located at (f,0) and (-f,0). Then, the
locations where the ellipse intersects the y-axis is at locations (0,b) and (0,-b), and the line connecting the
foci to these locations have lengtha. From the triangle thus formed, it is clear thatf 2 = a2−b2.

3.1 Covariance Matrix (ND) 7

(f,0)
(a, 0)

(0,0)

(b, 0)

a

(-f,0)

a

(a, 0)

(b, 0)

Figure 1:Ellipse notation illustration.

These definitions can be expanded to 3D and will be used in the following feature definitions. First, however,
the covariance measurement will be defined in terms of the normalized second order central moments, and
these will, in turn, be used to defined the eigenvalues/eigenvectors.

3.1 Covariance Matrix (ND)

The covariance matrix is constructed directly from the normalized second order central moments in ND
using the loop defined in Algorithm 1. For example, in 2D, thisbecomes

cov(I(x,y)) =

[

µ′20 µ′11
µ′11 µ′02

]

(21)

and in 3D it becomes

cov(I(x,y)) =





µ′200 µ′110 µ′101
µ′110 µ′020 µ′011
µ′101 µ′011 µ′002



 (22)

3.2 Eigenvalues and Eigenvectors (ND)

The eigenvectors and eigenvalues of the objects are needed for calculating many features. These are calcu-
lated directly by eigen-decomposition of the ND covariancematrix. The notation we use here is

• λi = ith eigenvalue of covariance matrix

• vi = eigenvector corresponding toλi

For example, in 2D,λ1 is the eigenvalue along the main axis, andλ0 is the eigenvalue along the axis
perpendicular to the main axis.

Note that, in 2D, the calculation of the eigenvalues can be simplified as

λi =
µ′20+µ′02

2
±

√

4µ′211+(µ′20−µ′02)
2

2
(23)

8

4 Calculated Object Features

4.1 Volume and Centroid (ND)

The volume and centroid of the objects can be directly calculated from the image moments. For example,

in 2D: Volume =M00, Centroid =

[

M10

M00
,

M01

M00

]

. When calculating the unweighted centroid,I is a binary

object, and when calculating the weighted centroid,I is the intensity image.

4.2 Axes Lengths (ND)

The length of the axes of the ND hyper-ellipsoid can be found directly from the eigenvalues as

4
√

λi (24)

wherei is the index of the eigenvalue fromi = 0, ...,D− 1. If the eigenvalues are in increasing order, the
axes lengths will correspond to the increasing lengths of the hyper-ellipsoid axes. Thus, for a 2D object, the
major axis length is 4

√
λ1, and the minor axis length is 4

√
λ0.

Referring to Figure1, these definitions mean thata = 2
√

λ1 andb = 2
√

λ0.

4.3 Eccentricity (2D)

Eccentricity is defined in 2D as the ratio of the distance between the foci to the length of the major axis.

Using Figure1, this is equal to
f
a

. Sincea = 2
√

λ1, b = 2
√

λ0, and f 2 = a2−b2

f
a

=

√

MajorAxisLength2−MinorAxisLength2

MajorAxisLength
=

√

(4
√

λ1)2− (4
√

λ0)2

4
√

λ1
=

√

λ1−λ0

λ1
(25)

Note that as the ellipse approaches a circle,λ0 → λ1 and the foci becomesf 2 ≈ λ2
1−λ2

1 = 0 leading to an
eccentricity of 0. As the ellipse approaches a line,λ0 → 0, and f 2 ≈ λ2

1, so the eccentricity becomes 1.

4.4 Elongation (2D)

The elongation feature is defined as the ratio of the major axis length to the minor axis length

MajorAxisLength
MinorAxisLength

=
4
√

λ1

4
√

λ0
=

√

λ1

λ0
. (26)

4.5 Object Orientation (2D)

In 2D, the eigenvectorsv1 corresponding to the largest eigenvalueλ1 corresponds to the major axis of the
object, so the orientation can be extracted from the angle between this eigenvector and the origin

θ = tan−1
(

v1(1)

v1(0)

)

(27)

4.6 Bounding Box (ND) 9

In 2D, thisθ can also be simply calculated without calculating the eigenvalues/eigenvectors as

θ =
1
2

tan−1
(

2µ′11

µ′20−µ′02

)

(28)

4.6 Bounding Box (ND)

The bounding box is calculated as the minimum and maximum indices in each dimension of the object. It is
represented as a set of min/max pairs for each dimension. In 2D, it is [min(X), max(X), min(Y), max(Y)],
and in 3D it is [min(X), max(X), min(Y), max(Y), min(Z), max(Z)].

4.7 Oriented Bounding Box Vertices (ND)

The oriented bounding box is defined as the bounding box aligned along the axes of the object. It is more
complex to compute than the standard axes-aligned boundingboxes and cannot be defined simply using
min/max pairs since the axes are no longer aligned with the image axes.

The oriented bounding box is calculated using the eigenvectors to define the rotation of the object. First, the
centroid of the region is subtracted so that the rotation will be about the center of the region. Then, the object
is rotated to the new coordinate system defined by the eigenvectors. The bounding boxes are calculated in
the rotated space. The bounding box cannot be transformed directly back to the original space because
an oriented bounding box cannot be specified simply by the minand max in each dimension. Instead, the
oriented bounding box is defined by its vertices, and these are transformed back to the original coordinate
frame. Finally, the centroid is added back to yield the correct rotated bounding box vertices.

In our implementation, the order of the ND vertices corresponds with binary counting, where min is zero
and max is one. For example, in 2D, binary counting will give [0,0], [0,1], [1,0], [1,1], which corresponds
to [minX,minY], [minX,maxY], [maxX,minY], [maxX,maxY]. In ND, there will be 2N vertices.

Three additional features that are measured in the process are

• The rotation matrix.

• The oriented bounding box volume.

• The oriented bounding box size, which is an ND vector describing the length of the bounding box in
each direction.

4.8 Oriented Image Region (ND)

The rotation matrix calculated for the oriented bounding box calculation can be used to rotate the image
region of each object. When all objects are rotated around the centroid to align with the coordinate system
defined by the eigenvectors, it has the effect of aligning allof the objects along common axes. This operation
can be applied to either the label image or the intensity image and results in cropped images.

10

5 Implementation

5.1 Implementation Structure

This filter is implemented using a LabelGeometry class, which contains all of the information for a particular
label value. A mapper from the label value to the LabelGeometry class is populated for each label found in
the label image.

To calculate the features, the code first loops through all ofthe pixels of the image to populate parts of
the LabelGeometry structure, and then the code loops through each of the labels to calculate the remaining
features. In the loop through all pixels in the label image, it calculates the following ND values for each
label

• Label value

• Raw zero order moment (volume)

• Raw first order moments

• Raw second order moments

• Bounding boxes

The output of the first loop is a mapping from all labels in the input label image to a LabelGeometry structure
with the features listed above calculated. The mapper is used because, depending on the labels in the input
label image, it may be that not all labels from 1 to max(labelValue) will be present (the label 0 is assumed
to be background). The code next loops through all of the labels to calculate the rest of the features, which
can be derived from the ones above as described in Section4. In this iteration, the following values are
calculated

• Centroids

• Second order central moments

• Normalized second order cen tral moments

• Covariance matrices

• Eigenvalues & Eigenvectors

• Axes lengths

• Eccentricity

• Elongation

• Orientation

• Bounding box volume

• Bounding box size

• Image regions defined by the bounding boxes

5.2 Inputs and Feature Accessor Methods 11

All of these features are calculated by default. If an intensity image is also defined, the code will also loop
through the intensity image and calculate the integrated intensity and weighted centroid by default.

In addition, if the corresponding methods are called, the following features are also calculated. These
features require more computation and/or memory than the others.

• Pixel indices

• Oriented bounding box vertices

• Oriented bounding box volume

• Oriented bounding box size

• Rotation matrix

• Oriented label image

• Oriented intensity image (if intensity image is defined)

5.2 Inputs and Feature Accessor Methods

The only required input is a labeled image. This should be an image with unique label values for each
individual object and the value 0 for the background. An optional intensity image can also be supplied, in
which case the features based on both intensity and shape will be calculated.

To calculate only the default values, the following code canbe used, whererelabeler is the
itkRelabelComponentImageFilter that has been applied to the connected components of a binaryimage.

typedef itk::LabelGeometryImageFilter< LabelImageType > LabelGeometryType;
LabelGeometryType::Pointer labelGeometryFilter = LabelGeometryType::New();
labelGeometryFilter->SetInput(relabeler->GetOutput());
labelGeometryFilter->Update();

All that was needed was to define the input image and callUpdate(). If it is also desired to calculate
the features based on intensity and/or to calculate the features that take more time and memory, a desired
selection of the following lines can be placed before theUpdate() command on the filter.

labelGeometryFilter->SetIntensityInput(intensityReader->GetOutput());
labelGeometryFilter->CalculatePixelIndices();
labelGeometryFilter->CalculateOrientedBoundingBox();
labelGeometryFilter->CalculateOrientedLabelRegions();
labelGeometryFilter->CalculateOrientedIntensityRegions();

HereintensityReader is the output of a reader of an intensity image.

The object features are accessed using the label of the object. In this case, the labels are assigned by the
relabeler filter. In the following code, a label value is specified, and several features are queried for this
label.

12

LabelGeometryType::LabelPixelType labelValue = 9;
std::cout << "Volume: " << labelGeometryFilter->GetVolume(labelValue) << "\t";
std::cout << "Centroid: " << labelGeometryFilter->GetCentroid(labelValue) << "\t";
std::cout << "Axes Length: " << labelGeometryFilter->GetAxesLength(labelValue) << "\t";
std::cout << "Eccentricity: " << labelGeometryFilter->GetEccentricity(labelValue) << "\t";
std::cout << "Bounding box: " << labelGeometryFilter->GetBoundingBox(labelValue) << "\t";

The features described in Section4 can be accessed using theGet() methods in Table2.

The features that are calculated internally that do not haveaccessor methods are

• First order raw moments

• First order weighted raw moments (if intensity image defined)

• Second order raw moments

• Second order central moments

6 Conclusions

The itkLabelGeometryImageFilter is a filter for measuring features of objects in a labeled image. Several
core features are implemented, and the code was designed so that these features can be easily extended as
measurements of other features are desired.

13

Table 2:Feature Accessor Methods
unsigned long GetVolume (LabelPixelType) Return the number of pixels for a label. This is the

same as the volume and the zero order moment.
RealType GetIntegratedIntensity (LabelPixel-
Type)

Return the integrated intensity for a label.

LabelPointType GetCentroid (LabelPixelType) Return the unweighted centroid for a label.
LabelPointType GetWeightedCentroid (La-
belPixelType)

Return the weighted centroid for a label.

VectorType GetEigenvalues (LabelPixelType) Return the eigenvalues as a vector.
MatrixType GetEigenvectors (LabelPixelType) Return the eigenvectors as a matrix.
AxesLengthType GetAxesLength (LabelPixel-
Type)

Return the axes length for a label.

RealType GetMinorAxisLength (LabelPixel-
Type)

Return the minor axis length for a label. This is a
convenience class that returns the shortest length from
GetAxesLength.

RealType GetMajorAxisLength (LabelPixel-
Type)

Return the major axis length for a label. This is a
convenience class that returns the longest length from
GetAxesLength.

RealType GetEccentricity (LabelPixelType) Return the eccentricity for a label.
RealType GetElongation (LabelPixelType) Return the elongation for a label.
RealType GetOrientation (LabelPixelType) Return the orientation for a label defined in radians.
BoundingBoxType GetBoundingBox (LabelPix-
elType)

Return the computed bounding box for a label. This
is organized in min/max pairs as [min(X), max(X),
min(Y), max(Y),...]

RealType GetBoundingBoxVolume (LabelPix-
elType)

Return the volume of the bounding box.

LabelSizeType GetBoundingBoxSize (La-
belPixelType)

Return the size of the bounding box.

LabelIndicesType GetPixelIndices (LabelPixel-
Type)

Return all pixel indices for a label.

BoundingBoxVerticesType GetOrientedBound-
ingBoxVertices (LabelPixelType)

Return the oriented bounding box vertices. The or-
der of the vertices corresponds with binary counting,
where min is zero and max is one. For example, in
2D, binary counting will give [0,0], [0,1], [1,0], [1,1],
which corresponds to [minX,minY], [minX,maxY],
[maxX,minY], [maxX,maxY].

RealType GetOrientedBoundingBoxVolume
(LabelPixelType)

Return the volume of the oriented bounding box.

LabelPointType GetOrientedBoundingBoxSize
(LabelPixelType)

Return the size of the oriented bounding box.

MatrixType GetRotationMatrix (LabelPixel-
Type)

Return the rotation matrix defined by the eigenval-
ues/eigenvectors.

RegionType GetRegion (LabelPixelType) Return the region defined by the bounding box.
TLabelImage *GetOrientedLabelImage (La-
belPixelType)

Return the label region defined by the oriented bound-
ing box.

TIntensityImage *GetOrientedIntensityImage
(LabelPixelType)

Return the intensity region defined by the oriented
bounding box.

	Introduction
	Image Moments
	Hyper-Ellipsoid Fitting
	Covariance Matrix (ND)
	Eigenvalues and Eigenvectors (ND)

	Calculated Object Features
	Volume and Centroid (ND)
	Axes Lengths (ND)
	Eccentricity (2D)
	Elongation (2D)
	Object Orientation (2D)
	Bounding Box (ND)
	Oriented Bounding Box Vertices (ND)
	Oriented Image Region (ND)

	Implementation
	Implementation Structure
	Inputs and Feature Accessor Methods

	Conclusions

