A nonparametric, entropy-minimizing MRI tissue
classification algorithm implementation using ITK

Tolga Tasdizen, Suyash Awate, and Ross Whitaker

University of Utah

Abstract. This paper focuses on the role of open-source software in the develop-
ment of a novel magnetic resonance image (MRI) tissue classification algorithm.
Specifically, we describe the of use existing classes in the Insight Segmentation
and Registration Toolkit (ITK) and several new classes that were implemented
to perform non-parametric density estimation and entropy minimization. These
new classes also provide a general framework for nonparametric density estima-
tion and related applications.

1 Introduction

Classification of brain tissue types from magnetic resonance images (MRI) is an impor-
tant problem in biomedicine with applications in fields such as diagnosis and surgical
planing. Manual segmentation of high-resolution 3D images is an extremely time con-
suming and subjective task; hence, automatic and semi-automatic brain tissue classifica-
tion methods have been studied extensively in the field of biomedical image processing.

Automatic MRI tissue classification systems have to tackle several problems in-
cluding additive noise, multiplicative bias fields and the partial voluming effect. Fur-
thermore, these systems are typically iterative and require an initial rough classification
to start iterating from. These problems have led to a class of systems that incorporate
the following strategies:

1. Parametric statistical models of single-pixel image intensity for each tissue class,

2. Markov random field (MRF) models for removing the effects of measurement
noise [1-5],

3. Bias field correction [3, 6], and

4. Digital brain atlas information [7, 8].

In [9], we introduce a new approach for removing the effects of imaging noise in tis-
sue classification using a statistical framework. Our approach the intensity and spatial
smoothness models (items 1-2) using an unsupervised learning approach that incor-
porates nonparametric statistics of local neighborhoods. It is compatible with state-of-
the-art segmentation methods that use probabilistic brain atlases [7, 8] and bias field
correction [3]. In [9], we compare the proposed algorithm against a state-of-the-art tis-
sue classification method using synthetic data with ground truth. The results obtained
with the proposed algorithm have higher overlap with the ground truth. Furthermore,
the performance of our approach scales better with noise compared to other algorithms.
For mathematical and experimental details we refer the reader to [9]. The rest of this
paper focuses on the implementation of the algorithm in the Insight Segmentation and
Registration Toolkit (ITK) [10, 11] framework.



2  MRI Tissue Classification Algorithm

Our goal is to design and implement the classes that are necessary for the algorithm
outlined described in [9]. Figure 1 illustrates the flowchart for the algorithm; existing
ITK classes are shown with a white background, new classes implemented for this
algorithm are shown with a green (dark) background and data is shown with a blue
(light) background.
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Fig. 1. MRI tissue classification algorithm flowchart. Blue (light) background: data, Green (dark)
background: new classes, White background: previous ITK classes.

2.1 Atlas registration

In [9], we use the ICBM probabilistic atlas [12], which provides probabilities of gray
matter, white matter and CSF classes for each pixel. The number of atlases passed on
to the algorithm determines the number of tissue classes to be classified, one class for
each atlas. Therefore, the method is not limited to MRI tissue classification or a specific
number of classes; any problem in which the user has access to a set of pre-computed
probabilistic atlases can make use of the algorithm. However, these atlases need to be
registered with the data prior to classification.



Registration of various medical image modalities is one of the original and main
goals of ITK; hence, a range of classes and algorithms dedicated to registration are
present in the current toolkit. The classification algorithm expects a series of proba-
bilistic tissue atlas images that have been registered with the MR image to be classified.
Therefore, the registration stage is treated as a separate and independent entity in the
overall pipeline. Users can plug in and try different registration algorithms. In our pre-
liminary work, the results published in [9] were obtained using the stand alone Land-
marklInitializedMutuallnformationRegistration application, which is part of the Insight
Applications package [10], with the affine transformation setup.

2.2 Classification

The actual classification stage simply iterates through all the pixels of the image, calls
the tissue likelihood functions (membership functions) and sets the corresponding pixel
in the output image to be the class index for which the product of the likelihood function
and the prior function from the probabilistic atlas is largest. This functionality can be
implemented using the ImageClassifierBase class tree in ITK. This class requires that
a series of membership functions (class likelihoods in our case) and a decision rule
function to be plugged in before requesting the output. However, ImageClassifierBase
is currently not implemented to work with multiple threads. We will work on a multi-
threaded implementation for this class.

The likelihood functions used in [9] are discussed briefly in Section 2.5. These func-
tions are defined over image neighborhoods. In other words, the pixels in the neighbor-
hood of every pixel is turned into a vector and placed in another image which than
becomes the feature vector image. This is discussed next.

2.3 Generation of feature vectors.

We have a generic class that generates the samples in the feature space specific to the
application at hand. This class is not shown in the flowchart for simplicity; however,
it acts on the image data to generate the feature vectors at the outset of the algorithm
and also after every bias field correction stage. We intend this class to be able to handle
augmented feature spaces built from different kinds of features. For this particular ap-
plication we define the feature space to consist of neighborhoods from the image. Thus,
we need to create an image of vectors where the vectors are derived from a neighbor-
hood around each pixel. We store these vectors in an Image class instantiated with a
PixelType of Vector. We create this feature space by using neighborhood iterators to
iterate over the entire image while creating one vector at each pixel location out of that
pixel’s neighborhood intensities.

2.4 Bias Field Correction

ITK’s MRIBiasFieldCorrectionFilter class is currently used for the bias field correction
stage. The bias field correction is updated at each iteration of the algorithm with a new
mask that depends on the classification result at that iteration. In this framework, users
are free to plug-in any bias field corrector.



2.5 Likelihood functions

New classes for non-parametric density estimation have been implemented. These are
shown with a dark green background in the flowchart, Figure 1. These classes have two
important functions: (i) to estimate the probability density of a feature vector given a
sample and (ii) to automatically compute the necessary kernel parameters from the sam-
ple. Density estimation: We use the Parzen-window nonparametric density estimation
technique [13] with an isotropic Gaussian interpolation kernel The density estimate for
tissue class k at pixel ¢ is
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where z(t) is the feature vector at ¢ and Ay(¢) is a subset of pixels that are locally
clustered around pixel ¢ and classified as belonging to class & at the present iteration.
Parameter selection: The likelihood function defined above depends on the param-
eter 0 which determines the size of the Gaussian kernels used in the estimation. In [9],
we describe an automatic technique for the selection of this parameter which entails the
computation of the first and second derivatives of p; with respect to o. All density esti-
mation classes are independent from the source that creates the feature vectors. Hence,
they apply to any list of feature vectors whether it was created from an image or not.

2.6 Generation of density estimation sample

In order to process, in this case classify, every pixel in the image we need a set of vec-
tors (sample A (1)) in the spatial locality of the pixel. The FeatureListGenerator class
performs this task. The MRI classification algorithm randomly choses the set of vectors
from a Gaussian distribution centered at the pixel being processed. To perform this task
we create another class that generates random Gaussian-distributed indices in the im-
age. Since we intend the framework to be threaded eventually, we have created a class
for a thread-safe random number generator. This class essentially relies on explicitly
assigning a buffer/memory for the system-level random number generation function so
that each instantiated object operates independently, using its private buffer, to generate
random numbers.

3 Discussion

We have implemented the proposed MRI tissue classification in a flexible manner where
the user will be able to experiment with different registration and bias field correction
methods as well as plug in different kinds of kernels, i.e. non-Gaussian kernels, for
nonparametric density estimation which operate on different kinds of feature vectors.
Furthermore, the nonparametric density estimation classes can be reused in other im-
age filtering and classification applications as well as non-image based algorithms. As
mentioned previously, the density estimation classes operate on a list of feature vectors
and can operate on non-image data. We plan to implement the image filtering approach
discussed in [14].
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