Component tree: an efficient representation of
grayscale connected components

Gaétan Lehmann?

December 31, 2007

1IINRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

Connected component is a well known and very useful notion in binary case. As oftemathematical
morphology, this notion can be extended to the grayscale, sl allow to perform lot of the useful
transforms based on binary connected components in thescakeyimages. This article describe the
component tree, a data structure able to efficiently represent the gragsoahnected components in an

grayscale image, as well as the algorithm used to build thepoment tree.
All the source codes are provided, as well as a full set o$taistl several usage examples of the new

classes.
Contents
1 A few definitions and properties 1
2 Component tree 2
2.1 Datastructure. e 2
2.2 Implementation. e 3
2.3 Comparison with implementations described inrefegenc 4
2.4 Comparison with the binary implementation 5
Line representation vslinked list 5
Indexvsoffset 6
Support for large number of attributes vs single templatetbate 6
Parallel vs recursive attribute computation. 6
2.5 Computation of the componenttree. e 6

1 A few definitions and properties

The connectivity defines which pixels are in the neighboachof a pixel. The same connectivity is usually
defined for all the pixels in an image.

A binary connected component is defined as a set of foregrpixeds for which at least one path exists
between all the pairs of pixels of the connected componerihé graph formed by the pixels of the image
and the connectivity used for that image.

The connected component notion can be extended to grayistadges with the notion ahreshold set. A
threshold set is the set of foreground pixels formed by sielga@ll the pixels greater or equal to a thresh-
old value. The connected components can be found at a defineshold: that's the (binary) connected
components in the threshold set. As a consequence, theas anech connected components sets as pixel
values in a grayscale image. Also, it can be noticed that aexxied component at a given threshold can’'t
partially contain a connected component at a higher thitdshthe connected component is fully included
or is not included. This is a very interesting property ofyg@ale connected components, because it make
the transforms based on that notion never add or move aniidron the image — they can only be removed.
That property makes possible to represent the grayscaleected components as a tree: the component
tree.

The above definition of the threshold set is valid for the iemghere the objects are bright and the back-
ground is dark. If the image contain dark objects, the pirelst be selected if they have a value lower or
equal to the threshold value.

In the various articles about connected component, the meaxatree is often used in place of component
tree. In that article, the termmax-tree is used for the component trees which are representing thulgjbcts,
andmin-tree for the component trees which are representing dark obj@tts termcomponent treeis used
when the notion of bright or dark object is not important.

In some articlesmax-tree and component tree are used to define two variants of the same data structure —
it's not the case in that article.

2 Component tree

The component tree is an efficient representation of all timected component sets in a grayscale image.

2.1 Data structure
The component tree is a tree, and thus contains nodes whieh ha

e a parent node,

e some child nodes.

Theroot node is the only node with no parent. A node without any chiilcklled deaf. Each node represent
a connected component at a given threshold, and is thusiatesbuwith:

e the pixel value used as threshold,

e the list of pixels in that connected component.

However, each node does not list all the pixels in the comuecbmponent, but only the ones with the exact
pixel value associated with that node. Thanks to the inafusglation with the connected components at

2.2 Implementation 3

higher threshold values, all the pixels of the connected pmmnt can be computed as the union of the
pixels in the node, and the pixels of all its children.

Finally, a node is often associated to attribute, often a value of a specific property of the connected
component (like its size, its shape, its intensity, ...therthe relation with the other connected components
of the tree (like the intensity variation with the parent epthe number of children, ...). In practice, many

kind of attributes can be associated to a node.

2.2 Implementation

A patrticular attention has been ported both on usability andgerformance of the code. For usability,
and following the approach used in ITK, the code has beenemehted using the object paradigm style.
However, a much rough approach has also been used in soméeaaase of the significant performance
improvements.

There are two critical points for usability, and for perfantes:

e the nodes,

e the indexes.
Both of them may be found in important number in the compotrest However, it must be noticed that:

e there are less nodes than indexes,
e the nodes are much often manipulated by the developerstieandexes,

e the number of indexes is known, and always the same in an invelgiee the number of nodes is
unknown before building the tree, and can change with thestoams,

e for both indexes and nodes, the order in the children andanritiexes containers is not relevant,

e while merging nodes, both indexes and nodes (children)agoets must be merged as well, and so
the merging must be efficiently implemented (if possiblecamstant time) in the indexes and nodes
containers,

e the nodes is a set of different kind of data, while the indextessimply a position in an image.
Given the usability and performances considerations gamave, it has been chosen to implement:

e the indexes as a simple offset in the image, of thg®. It can be easily converted to a futk:: Index
with the method provided in thigk::ImageBase class, and is much efficient both in memory and in
computation time than thgk::Index. The memory usage for exampleddimes much efficient, where
D is the image dimension.

e the index list as a custom list, which takes advantage of quewtecularities cited above (see below
for much details).

e the nodes as a new clastk;: ComponentTreeNode (see below for much details).

e the children list as atd::list. This data structure can be efficiently merged (in consiame)t

2.3 Comparison with implementations described in references 4

The proposed implementation is based on two main classestk::ComponentTree and
itk:: ComponentTreeNode.

itk::ComponentTreeNode is the class for all the node of a component tree. It conta@veral variables
dedicated to that task:

Pixel is the pixel value,

Parent is a pointer to the parent node,

Children is a list of the children nodes,

Firstindex andLastIndex are the first and last indexes of the index list (see below),

Attribute is the attribute associated with the node.

The list of indexes is implemented in a compact way. It isesian two places:

e An array of typestd: :vectorjlong¢, of the same size than the image is stored intkieComponentTree
class. The indices of the array correspond to the indexdseimtage. Each content of that array is a
reference to the next element in a list of indexes;-arif that the last element.

e The first index of the indexes list is storeditk:: ComponentTreeNode, as well as the last index, to
allow a constant time merge.

This way of storing the indexes lists requires far less mgntizain with astd::list:

e (N-+2)L for the implemented way,

e (3N +2)L with thestd::list, because of the link to the previous and the next node,

wherelL is the size of théong type on the system, ard the size of the list.

There can be a quite important number of nodes in a tregks@omponentTreeNode is a critical class for

the performances of the transforms based on the comporeas, nd thus has not been implemented as a
subclass oftk::LightObject, to avoid the cost of the smart pointers management, andosteo€ the object
factories.

2.3 Comparison with implementations described in references

The component tree implementation is described in sevetialess, sometimes in details, sometimes very
roughly. In general, the tree is implemented a®a@ted tree, where each element contains a pointer to its
parent, or to the canonical element of its node. The rootsglis an array of the same size than the image,
where all the elements are a index to a another element irathe array. The attributes are stored in another
structure outside, and the pixel value associated with tldes can be retrieved from the original image.

This way of storing the component tree has some advantagegased to the proposed implementation:

e the memory usage is the smallest known one.

e attribute computation may be much efficient, by scanningdloged tree in raster order.

2.4 Comparison with the binary implementation 5

e it allow direct access to the node from the pixel position.
but it also has some problems:

e the structure may not be canonical (all the element in théetbtree points to the parent node, or to
the canonical node)

e there is no direct link between the attribute and the nodimpties some extra work to keep the data
structure used to store the tree and the data structure ostaré the attribute values synchronised.

e if each element of the rooted tree is associated with arbat&rivalue, storing those values is highly
less memory efficient than storing an attribute value fohezade.

e removing a node, by merging itin its parent, had(@) complexity, wheren is the number of pixels in
the removed node, if the elements of the nodes are knowrQéNd, whereN is the size of the image,
if the elements are not known, which is the much common sinafhe complexity i€(C) with the
proposed structure, whe@is the number of children. Also, the rooted tree requires talify the
input image, or to recreate a new image similar to the inpeatwhen the tree is manipulated. With
that last case, and depending on the pixel type, it can higgrtyease the memory performance of the
rooted tree implementation.

e determine if a node is a leaf or not is quite difficult. It candmme in constant time with the proposed
implementation.

Note that some of the problems above are irrelevant withifiggioint pixel type, because, most of the time
in that case, a node contains a single pixel.

2.4 Comparison with the binary implementation

The binary case has been implemented in another contibtidTK. The differences are studied in that
section.

Line representation vs linked list

The indexes contained in an object are implemented withiihdength encoding in the binary case. With
that implementation, it is possible to store a high numbendéxes in only two values:

e an index,

e aline length.

It is particularly efficient for the connected componentseve lots of pixels are likely to be neighbours on
a line. It also makes possible to optimise the computatiosoaie attributes by avoiding the iteration over
all the pixels contained in a line coded that way.

It would have be perfectly possible to use that encoding enctbmponent trees. However, the component
tree only store the indexes at a single pixel value — all theneoted component is not store in each node.
This data structure make less likely to have to code a lind tdasst two pixels. Also, the lists of indexes
shown above would have more difficult to create with that eirog.

2.5 Computation of the component tree 6

Index vs offset

In the binary case, the indexes used in the run-length engaaiie stored agk::Index. It is the more
standard way to code an index in ITK. However, it requires M foore memory than a simple offset in an
image, where N is the dimension of the image. Because the @oemp tree code doesn't use the run-length
en coding, it uses a lot more indexes that in the binary casi,l®s been chosen to use the offsets rather
than theitk::Index to reduce the memory usage.

Support for large number of attributes vs single templated attribute

The binary object representation has been made to supperasattributes at a time. The component tree
node is made to support only a single templated attributeré are two main reason for that difference:

e the binary object are often used to read the attribute vabiies object, to describe the object for
example. It is often interesting in that case to be able tescseveral attributes at a time. Reading
the attribute values on a component tree node seem to be saveryse case.

e the number of objects in the binary case is likely to be a loallenthan the number of nodes in the
component trees. Given the high number of nodes, it is safstare a single (templated) value per
node, and compute the value of another attribute if needdhder than storing several attribute in a
node. It is possible however to store several attributesidinyg astructure as attribute type.

Parallel vs recursive attribute computation

In the binary case, all the objects are distinct. It is easyaimpute the attribute values of several objects
in parallel. In the component trees, the objects are not disseparated: a connected component is made
of the pixels associated to a node, and of the pixels of athtklren. Also, computing the attribute value
of a node is often made from the values of its children. Thebate computation is naturally implemented
recursively, and thus is much difficult to implement in phedl

2.5 Computation of the component tree

An usual itk::lmage can be converted to antk::ComponentTree with the specialisations of
itk:: ImageToComponentTreeFilter: itk:: ImageToMaximumTreeFilter for the bright objects and
itk:: ImageToMinimumTreeFilter for the dark objects.

The algorithm implemented is a slight modification of theagithm from Najman and Couprie. It use the
data structure described above to reduce the memory usagiee@ by the algorithm: during the build of
the component tree, thearent is the last node known to be the current root of the tree.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://ww.itk.org/lItkSoftwareGuide.pdf, 2003.

	A few definitions and properties
	Component tree
	Data structure
	Implementation
	Comparison with implementations described in references
	Comparison with the binary implementation
	Line representation vs linked list
	Index vs offset
	Support for large number of attributes vs single templated attribute
	Parallel vs recursive attribute computation

	Computation of the component tree

