Parameterization of Discrete Surfaces

Release 0.01
Arnaud Gelas!, Alexandre Gouaillard?

November 21, 2007

IBiomedical Imaging Laboratory, SBIC, A-STAR, Singapore
2Center For Excellence in Genomic Sciences,
California Institute of Technology, Pasadena, USA

Abstract

Parameterization of surfaces, sometimes called ”‘flattening”” as it maps a surface embedded in 3D
into its intrinsic 2D domain, is a powerfull tool for the analysis of surfaces. For the past years, there has
been a growing interest in the Community that even lead to one implementation of one special type of
parameterization in ITK [1,5,8,9]. We are providing here a more general framework for parameterization
of single connected surfaces of any genus. It is based on a recent addition to ITK: itkQuadEdgeMesh [6]
which allows an elegant an optimal implementation of algorithm for geometry and topology processing
of discrete 2-manifolds. The 6 algorithms that we implemented map the meshes into a planar domain
with fixed boundary leading to more stability and speed than mapping into the spherical domain. Each
of them use different kind of parameterisation with different properties. The conformal parameterisation
is usually used as it is intrisic to the geometry of the mesh and thus allow shape analysis independently
of the connectivity. However if flatening the mesh is your only goal, then the simplest parameterization
algorithm (graph theory) will give you the best speed. This is the case when you want to further process
the mesh in a lower dimension. Using specific solvers, the parameterisation of meshes can be done
sufficiently fast (couple of seconds) to consider this approach in interactive applications.

Contents

1 Introduction
1.1 Statementofthe problem . . . . . . . . .. .. L 1
1.2 Applications . . . . . . . . .. e e e e e e e e 2

2 Background 2
2.1 Principle . . . . . oL e 2
2.2 Barycentric Weights . . . . . . . . . .. 3
2.3 Boundary Mapping . . . . . . ... e e e e 4
2.4 Numerical ISSUes . . . . . . . L e 4

3 Design 4
3.1 Border Transform . . . . . . . . . . . e e 5
3.2 Barycentric weights . . . . . . . . Lo e 5
3.3 Parameterization . . . . . . . ... e e e e e e e s 5

3.4 Solving sparse linear system . . . . . . .. L. oL oo 5



4 Software Requirements 5

4.1 Solvers . . .. e e 6
5 Example 6
6 Future work 6

1 Introduction

1.1 Statement of the problem

Given any two meshes with the same topology, it is possible to compute a one-to-one and onto mapping
between them [11]. Whenever one of these two surfaces is represented by a triangular mesh, with at least
one boundary and singly connected, this problem is referred as mesh parameterization. Note that a surface
without boundary can be cut open along an arbitrary path to lead to the same surface with a boundary. An
algorithm to generate such a ”‘cut -graph™ is allready included in the itkQuadEdgeMesh [6] submission.
Thus the problem we adress with this code is much more general than the one adressed in [1,5, 8, 9] where
they limit their application to genus 0 meshes, and where they map to sphere, which is known to be more
unstable.

1.2 Applications

e detail mapping, synthesis

e morphing, detail transfert

e mesh completion

e mesh editing

e remeshing

e compression

e surface fitting

e ctcC...
This problem have received a lot of interest over the two last decades. Here we will not review all of
them, so we invite interested reader to have a look to [4, 11, 14] for recent surveys concerning all these
techniques. Parameterization, sometimes called ”‘flatening’’, of surfaces has been used in brain mapping

[7], Colonoscopy [10], cortical surface shape analysis [12], vessel geometry processing and many other
medical or biological problems. In this paper, we focus on linear parameterization with fixed boundaries.

In the following sections, we first present the required theoretical background and present in details the
design of our code.



Figure 1: A 3D I-ring and its associated flattened version.

2 Background

2.1 Principle

Since we only consider linear parameterization with fixed boundaries, one can see this method as a spring
and mass model where each vertex of the mesh is a mass and each edge of the triangular mesh is a spring.
By constraining the boundary of this model, the interior vertices will relax to the minimum of spring energy.

Consider each spring is ideal, i.e. the rest length is null and the potential energy is only %Dlz, where D
is the spring constant and / is the length of the spring. Then specify the desired parameter values u; =
(i, vi)i=1,...r for the boundary points p; € B, with L is the number of points on the boundary, then compute
the parameterization can be computed by minimizing the following energy:
1 N
E=—
2 &

1

1
Y gDinui*usz, )]
JeEN;

where N is the number of points of the mesh, 7] is the neighborhood of the vertex p;, and D;; = Dj; is the
spring constant corresponding to the edge connecting p; and p;.

The minimization of Eq. 1 leads to solve the following sparse linear systems

AU=0 )

where A is a n X n sparse square matrix with elements

1 ifi=j,
A=< —Dij [ Y Di ifjeN,
keN;
0 else 3)
U = (ui)i=1,..n = (4;,vi)i=1,..n is @ 2 X n matrix of unknown parameter values (inner points) and U=

(0)i=1,..~ = (@;,Vi)i=1,..n is @ 2 X n matrix with coefficients

(@i, vi) = Y

— (7)) “

As we have just presented, considering a triangular mesh as a mass spring model with constrained bound-
aries, naturally leads to solve linear systems. For this reason, such kind of methods are generally referred as
linear parameterizations with fixed boundaries.

2.2 Barycentric Weights

Now the main difference between all these methods reside in the choice of the spring constants, i.e. barycen-
tric weights. We provide here some of the possible choices given in the literature:



2.3 Boundary Mapping 4

1. Graph theory based [15,16]

Dij=1 )
2. Chord Length []
1
Djj=—— (6)
Y lIp; _PjH2
3. Discrete Conformal [13]
D;; = cot a;; + cot Bij (N

4. Discrete Authalic [3]
_cot Y;j+cot J;;

ij = 3)
! HPi—PjHZ

5. Intrinsic [3]
cot y;j +cot &;;

+ (1 — ) xcot a;; +cot B;; 9)
Y i+ ot By

D,‘j:,u*

2.3 Boundary Mapping

As presented, the first step of linear parameterizations with fixed boundary is to choose the image of the
boundary points in the parametric space.

The most common strategy is to fix the boundary points on a convex shape. Indeed it guarantees the bi-
jectivity of the parameterization if positive barycentric weights are used. For these reasons, most of linear
parameterization with fixed boundary take a square, or a circle as parameter domain.

2.4 Numerical Issues

As we mention previously in section 2.1, linear parameterizations with fixed boundary require to solve
sparse linear systems. There are many ways to solve sparse linear sytems Ax = b, but all methods can be
classified into two categories:

iterative solvers starting from an initialized solution x°, the solution is iteratively updated until convergence
to the solution x. The difference between these methods reside in the way to update the solution x'.

direct solvers factorize the matrix A into a product of matrices that are simple to invert. For example, a
LU decomposition consists in finding the lower triangular matrix L and the upper triangular matrix'
U such that the product LU is equal to A of the system to be solved. Then solving the linear system is
equivalent to solve easy triangular systems, i.e.

L-y=b
Ax=b & LUx=b —

U-x=y
A nice study has been done [2] that illustrates the advantages an inconvenients of the multitude of solvers
available in the case of mesh processing. We decided that it would be better not to hardcode the choice of
the solver in the code. First because that would mean hardcoding the usage of the vnl solver, the only solver
available to ITK by default which unfortunatly happen to be the slowest and the the less stable of the solvers

HfA s symmetric, then U = L' and the factorization is referred as a Cholesky factorization.



we could experiment so far, second because whichever solver is faster today might not be the fastest in one
month given how fast the research on that field seems to be recently. We took an a-la C-GAl approach where
the code is templated over the solver, even if our implementation then differs from C-GAL in many ways.

3 Design

Following the previous section, the design of the code is straightforward, each functionality should be inde-
pendent in order to make the use of the class as flexible as possible. The design of our class is finally given
in Fig. 2.

Figure 2: Design of our implementation. The parameterization class takes as input a 3D Surface Mesh M
with at least one boundary, and the choice of the boundary mapping and the barycentric weights is made
through the corresponding templates. It solves the rsulting sparse linear sytems using the solver given as a
template. Its outputs a planar Mesh which is the mapping of M onto the parametric domain defined by the
boundary mapping, given the barycentric weights.

3.1 Border Transform

We create an abstract class itk: :MeshBorderTransform which defines the API of the border transform.
All derived class must contain one method to provide a border map, and the boundary mapping from the 3D
space onto the parametric domain, i.e. a 2D domain.

We provide two implementations of this abstract class for a square shaped domain and a a circle shaped
domain.

3.2 Barycentric weights
For the bayrcentric weights, we define an abstract functor itk: :MatrixCoefficients. It takes as input a

3D triangular mesh and one hald edge and return the barycentric weight corresponding to the given edge.
All the existing functors are defined in itkQEMeshParamMatrixCoeficients.h:

e Graph theory based class OnesMatrixCoefficients

Chord Length class InverseEuclideanDistanceMatrixCoefficients

Discrete Conformal class ConformalMatrixCoefficients

Discrete Authalic class AuthalicMatrixCoefficients

Intrinsic class IntrinsicMatrixCoefficients

e Harmonic class HarmonicMatrixCoefficients



3.3 Parameterization 6

3.3 Parameterization

The parameterization itself is just a mater of building the sparse systems depending on the connectivity of
the surface mesh and the barycentric weights. It will delegates solving the matris to the solver specified in
the template, and then rebuild a mesh from the solution given by the solver.

3.4 Solving sparse linear system

Only a few parameters need to be modified in the solver. The solvers stops when the residual error is lower
than a threshold or when the maximum number of iteration is reached. If the result is not satisfactory,
there is great chance that the number of iterations was not set high enough. You can set a new one using
SetNumberOfIterations ().

4 Software Requirements
You need to have the following software installed:

o Insight Toolkit 3.4 (with Review enabled)

e CMake 2.4

For the sake of simplicity, we create some specific traits for solving sparse linear systems. One can either
use the one we wrote, or write this own one (if you want to use any other sparse direct solver for example)
and follow the same principle.

41 Solvers

vnl being included in ITK, we provide a default trait for vnl. It is strongly suggested that the user use other
solvers to have an interactive experience with parameterization. VNL should only be used as a proof-of-
concept or if your input mesh is relatively small. We recommand TAUCS, for which we provide traits.
Both should give you the same results or better with an increase of an order of magnitude in speed. In our
experiments, it also seems that it is numerically more stable than vnl for ill-conditionned matrices.

Download and install TAUCS from the following page: http://www.tau.ac.il/~stoledo/taucs/

5 Example

The example given along this paper use 1tkVTKPolyDataReader for reading its input. If you don’t have a
mesh to test with, you can find many here: http://www.aim-at-shape.net By default, if several borders
are present, the longer one is chosen. If run without arguments, the example displays its usage.


http://www.tau.ac.il/~stoledo/taucs/
http://www.aim-at-shape.net

6 Future work

We hope that the code will make it into the ITK toolkit. Even if the code is clean and commented, it does
not completely follows ITK developpement guide. For exemple we did not check the style using KWStyle;
a file can contain several classes; the naming convention is not always respected, .... It’s all minor and the
API should remain stable which motivated our early submission to the 1J. The parameterization package
open the way to remeshing techniques, and to shape matching algorithms that we would like to evaluate.
itkQuadEdgeMesh also allows a lot of mesh processing algorithm to be implemented in an elegant and
optimized fashion. We are planning to implement more and more of those starting with some decimation
and smoothing algorithms.

References

[1] S Angenent, S Haker, A Tannenbaum, and R Kikinis. Conformal geometry and brain flattening. In
the 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 271-278, 1999.

[2] Mario Botsch, David Bommes, and Leif Kobbelt. Efficient linear system solvers for mesh processing.
In Invited paper at XIth IMA Conference on the Mathematics of Surfaces, 2005.

[3] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes. Computer Graph-
ics Forum, 21:209-218, 2002. Eurographics conference proceedings.

[4] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A. Dodg-
son, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling,
Mathematics and Visualization, pages 157-186. Springer, Berlin, Heidelberg, 2005.

[5] Y Gao, J Melonakos, and A Tannenbaum. Conformal flattening itk filter. In Insight Journal - 2006
MICCAI Open Science Workshop, 2006.

[6] A Gouaillard, L Florez-Valencia, and E Boix. itkquadedgemesh: A discrete orientable 2-manifold data
structure for image processing. In Insight Journal - July - december, 2006.

[7] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S-T. Yau. Genus zero surface conformal mapping
and its application to brain surface mapping. IEEE Transaction on Medical Imaging, 23(8):949-958,
2004.

[8] S Haker, S Angenent, A Tannenbaum, and R Kikinis. Nondistorting flattening for virtual colonoscopy.
In the 3rd International Conference on Medical Image Computing and Computer-Assisted Interven-

tion, pages 358-366, 2000.

[9] S Haker; S Angenent; A Tannenbaum; R Kikinis; G Sapiro; M Halle. Conformal surface parame-
terization for texture mapping. In IEEE Transaction on Visualization and Computer Graphics, pages
181-189, 2000.

[10] W. Hong, X. Gu, F. Qiu, M. Jin, and A. Kaufman. Conformal virtual colon flattening. In Solid and
Physics Modeling, 2006.

[11] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameterization: Theory and practice. In SIGGRAPH
2007 Course Notes, volume 2, pages 1-122, San Diego, CA, August 2007. ACM Press.



References 8

[12] Yu P, Grant P, Qi Y, Han X, Sgonne F, Pienaar R, Busa E, Pacheco J, Makris N, Buckner R, Golland
P, and Fischl B. Cortical surface shape analysis based on spherical wavelets. IEEE Transaction on
Medical Imaging, 26(4):582-597, 2007.

[13] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental
Mathematics, 2(1):15-36, 1993.

[14] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their applications. Foundations
and Trends in Computer Graphics and Vision, 2(2):105-171, 2006.

[15] W. T. Tutte. Convex representations of graphs. In Proceedings of the London Mathematical Society,
volume 10, pages 304-320, 1960.

[16] W. T. Tutte. How to draw a graph. In Proceedings of the London Mathematical Society, volume 13,
pages 743-767, 1963.



	Introduction
	Statement of the problem
	Applications

	Background
	Principle
	Barycentric Weights
	Boundary Mapping
	Numerical Issues

	Design
	Border Transform
	Barycentric weights
	Parameterization
	Solving sparse linear system

	Software Requirements
	Solvers

	Example
	Future work

