
BRAINSFit: Mutual Information Rigid
Registrations

of Whole-Brain 3D Images,
Using the Insight Toolkit

Release 0.00

Hans Johnson1, Greg Harris2 and Kent Williams3

October 5, 2007
1hans-johnson@uiowa.edu

2gregory-harris@uiowa.edu
3norman-k-williams@uiowa.edu

The University of Iowa Carver College of Medicine,
Department of Psychiatry NeuroImaging Center

200 Hawkins Drive, Iowa City, IA 52242

Abstract

The University of Iowa’s Psychiatric Iowa Neuroimaging Consortium (PINC) has developed a program
for mutual information registration of BRAINS2 [2] data using ITK [1] classes, called BRAINSFit.

We have written a helper class, itk::MultiModal3DMutualRegistrationHelper to simplify im-
plementation and testing of different transform representations and optimizers. We have added a trans-
form meeting the ITK standard, itk::ScaleVersor3DTransform. BRAINSFit is based on the regis-
tration examples from ITK, but adds new features, including the ability to employ different transform
representations and optimization functions.

Our goal was to determine best practices for registering 3D rigid multimodal MRI of the human
brain. A version of the current program is employed here at PINC daily for automated processing of
acquired brain images.

*Acknowledgments

The following people should be recognized for their contributions: Vincent A. Magnotta, Norman Kent
Williams, Hans J. Johnson, Gregory Harris, Steven Pieper.

The BRAINS2 software was developed with the leadership of Nancy C. Andreasen, M.D., Ph.D. This work is
supported by NINDS grant 5R01NS050568, and NIMH Grants: MH31593, MH40856, and MHCRC43271.

Disclaimer: The University of Iowa and the Psychiatric Iowa Neuroimaging Consortium (PINC) make no
claims and guarantees about the BRAINSFit software package. The software package known herein as
BRAINSFit should be used for research purposes only.

Contents 2

Contents

1 Automating the Image Registration Process 2
1.1 A new transform class . 2
1.2 Conversion Routines for Versor transform types to Affine 3
1.3 A helper class to build an ITK pipeline . 3
1.4 Using Masks for Registration . 3
1.5 Using the Slicer3 Execution Model for command line parameters 3
1.6 Output Image Pixel Types . 3
1.7 Tuning of default program parameters . 3

2 Example Run 4

3 BRAINSFit Usage 5
3.1 Required Parameters . 5
3.2 Optional Parameters . 5
3.3 GenerateCLP Global Options . 7

4 Software Requirements 7

5 Building BRAINSFit 7

6 (8

1 Automating the Image Registration Process

We have developed a program for mutual information registration of brain imaging data using ITK [1]
classes. Our program, BRAINSFit, was based on an example program included in the ITK distribution,

Insight/Examples/Registration/ImageRegistration8.cxx

This program is the most functional example of multi-modal 3D rigid image registration provided with ITK.
ImageRegistration8 is in the Examples directory, and also sec. 8.5.3 in the ITK manual.

We have modified and extended this example in several ways:

• defined a new itk Transform class, based on itkScaleSkewVersor3DTransform which has 3 dimen-
sions of scale but no skew aspect.

• implemented a set of functions to convert from Versor Transforms to itk::AffineTransform be-
fore saving to file.

• Added a template class itkMultiModal3DMutualRegistrationHelper which is templated over the
type of ITK transform generated, and the optimizer used.

1.1 A new transform class 3

• Added image masks as an optional input to the Registration algorithm, limiting the volume considered
during registration to voxels within the brain.

• Defined the command line parameters using tools from the Slicer [3] program, in order to conform to
the Slicer3 Execution model.

• Added the ability to write output images in any ITK-supported scalar image format.

• Through extensive testing as part of the BRAINS2 determined reasonable defaults for registration al-
gorithm parameters.

1.1 A new transform class

itkScaleVersor3DTransform is a new ITK Transform class, which is a modification of
itkScaleSkewVersor3DTransform to remove the skew factors from the transform. The result
is a 9-parameter transform, comprising three dimensions each of rotation, translation and scale.
itkScaleVersor3DTransform is particularly useful in registration of brain images, which commonly have
symmetric size variations in all three dimensions.

1.2 Conversion Routines for Versor transform types to Affine

We implemented a vnl svd-based 3× 3 matrix orthonormalization routine and use it when coercing our
itkScaleVersor3DTransform to an itkVersorRigid3DTransform. In addition, we implemented assign-
ment functions for converting all supported transform types to itk::AffineTransform. This was originally
a requirement for integration with BRAINS2, but could be used in other programs as well.

1.3 A helper class to build an ITK pipeline

The new class itkMultiModal3DMutualRegistrationHelper encapsulates the complete processing
pipeline for mutual information registration. This class is parameterized over the output transform type,
optimizer type, input image type and output image type. This class captures all of the code common to all
forms of the Mutual Information Registration algorithm, such that only high-level configuration parameters
need be specified by the calling program.

This allows the MattesMutualInformation program to be a concise workbench for evaluating and using
different transform and optimizer types.

1.4 Using Masks for Registration

itk::ImageToImageMetric and all of its descendents (itk::MattesMutualInformationImageToImageMetric,
for example) can use mask images to limit the voxesl considered during registration to the relevant region
of the input and output regions. This can improve performance somewhat, both in time consumed and the
quality of the resulting registration. The origin ImageRegistration8 program didn’t include a provision
for using masks, so we added it.

1.5 Using the Slicer3 Execution Model for command line parameters 4

1.5 Using the Slicer3 Execution Model for command line parameters

The Slicer3 Execution Model is a way for a program to function as both a command line program, as as a
subroutine within the Slicer3 environment. The command line parameters are specified in an XML file that
includes documentation/help strings. This file is read by the Slicer3 utility GenerateCLP which generates
the code for handling the program’s command line. In addition to command line parsing, it can reproduce
the XML describing all parameters, which Slicer3 can us to build a user interface panel for the program.

1.6 Output Image Pixel Types

We added the command line parameter --OutputImagePixelType, which specifies one of
float,short,ushort,int,uint,char, or uchar. The most common image pixel types for MRI brain scans
is 16 bit integers (bcodeshort) or unsigned 8 bit char (uchar), but BRAINSFit internally uses single preci-
sion floating point pixels for the registration process. Consequently, by default BRAINSFit writes out images
with single precision pixels.

1.7 Tuning of default program parameters

The program presented in this project has been used for some time as part of the standard image processing
pipeline used at the University of Iowa for brain imaging studies. Using image registration programs is in
general somewhat difficult because of the large number of parameters to the registration algorithm that need
to be tweaked to get meaningful results.

As a result of the Iowa experience with using this MutualRegistration program, we have set program default
parameters to the set of parameters deemed the best behaved over the course of registering many scans. A
good registration fit is in most cases attained with no more program input than the fixed and moving image
file names and the output transform and/or image filename.

2 Example Run

The BRAINSFit distribution contains a directory named TestData, which contains two example images.
The first, test.nii.gz is a NIfTI format image volume, which is used the input for the CTest-managed
regression test program. The program makexfrmedImage.cxx, included in the BRAINSFit distribution was
used to generate test2.nii.gz, by scaling, rotating and translating test.nii.gz.

You can see representative Sagittal slices of test.nii.gz (in this case, the fixed image, test2.nii.gz
(the moving image), and the two images ’checkerboarded’ together in Figure 1. To register test2.nii.gz
to test.nii.gz, you can use the following command:

BRAINSFit --FixedImage test.nii.gz \
--MovingImage test2.nii.gz \
--OutputImage registered.nii.gz \
--FitTransformtype Affine

5

Fixed Image Moving Image Checkerboard

Figure 1: Registration Inputs

Fixed Image Registered Image Checkerboard

Figure 2: Registration Outputs

A representative slice of the registered results image registered.nii.gz is in the center of Figure 2. You
can see from the Checkerboard of the Fixed and Registered images that the fit is quite good with Affine
transform-based registration. The blurring of the registered images is a consequence of the initial scaling
used in generating the moving image from the fixed image, compounded by the interpolation necessitated
by the transform operation.
You can see the differences in results if you re-run BRAINSFit using Rigid, ScaleVersor3D, or
ScaleSkewVersor3D as the --FitTransformType parameter. In this case, the authors judged Affine
the best method for registering these particular two images; in the BRAINS2 automated processing pipeline,
Rigid usually works well for registering research scans.

6

3 BRAINSFit Usage

3.1 Required Parameters

--MovingImage <filename> The moving image for registration

--FixedImage <filename> The fixed image for registration

--OutputTransform <filename> Filename to which save the estimated transform

--StrippedOutputTransform <filename> File name for the estimated transform, stripped of scaling, to
register the moving image to the fixed image.

--OutputImage <filename> The (optional) output image for registration

3.2 Optional Parameters

--OutputImagePixelType <pixel type> Pixel type for output image. One of float, short,
ushort, int, uint, char, uchar(default: float)

--StudyID <study name> Identifier for the scanner encounter (MRQID) (default:
ANON)

--PatientID <patient ID> Identifier for the research subject (default: ANON)

--BackgroundFillValue <double> Background fill value for output image (default: 0)

--MaximumStepLength <double> Internal debugging parameter (default: 0.2)

--MinimumStepLength <double> Internal debugging parameter (default: 0.005)

--MedianFilterRadius <double> The radius for the optional MedianImageFilter preprocessing.
(default: 0)

--RelaxationFactor <double> Internal debugging parameter (default: 0.5)

3.2 Optional Parameters 7

--SkewScale <double> ScaleSkewVersor3D Skew compensation factor. Increase this
to put more skew in a ScaleSkewVersor3D search pattern. (de-
fault: 10)

--ReproportionScale <double> ScaleVersor3D ’Scale’ compensation factor. Increase this to
put more rescaling in a ScaleVersor3D or ScaleSkewVersor3D
search pattern. (default: 25)

--TranslationScale <double> Translation scale compensation factor. Decrease this to put
more rotation in the search pattern (default: 1000)

--NumberOfSpatialSamples <int> The number of spatial samples. Increase this for a slower,
more careful fit. (default: 100000)

--MaxNumberOfIterations <int> The maximum number of iterations to try beofe failing to con-
verge. Use an explicit limit like 500 or 1000 to manage risk of
divergence (default: 1500)

--MovingImageOrigin <x,y,z> The coordinates of the AC point of the moving image (default:
0,0,0)

--FixedImageOrigin <x,y,z> The coordinates of the AC point of the fixed image (default:
0,0,0)

--OriginsProvided Use provided AC point origins for initial alignment (default:
0)

--MovingImageTimeIndex <int> The index in the time series for the 3D moving image to fit, if
4-dimensional. (default: 0)

--FixedImageTimeIndex <int> The index in the time series for the 3D fixed image to fit, if
4-dimensional. (default: 0)

--ForceCoronalOrientation Permute axes of both the moving and fixed images so that they
are both in coronal orientation prior to estimating registration.
The resulting transform will be defined in terms of the coronal
orientations and will only be valid when applied to images that
are in coronal orientation. (default: 0)

--MovingMask <filename Moving Image Mask

--FixedMask <filename> Fixed Image Mask

--InitialTransform <filename> Filename of transform used to initialize for registration

--FitTransformType <type name> Specifies the ITK transform type generated. One of <Rigid,
ScaleVersor3D, Affine, ScaleSkewVersor3D (default:
Rigid)

3.3 GenerateCLP Global Options 8

3.3 GenerateCLP Global Options

--processinformationaddress <std::string> Address of a structure to store process information (progress,
abort, etc.). (default: 0)

--xml Produce xml description of command line arguments (default:
0)

--echo Echo the command line arguments (default: 0)

--, --ignore rest Ignores the rest of the labeled arguments following this flag.

--version Displays version information and exits.

-h,--help Displays usage information and exits.

4 Software Requirements

You need to have the following software installed:

• Insight Toolkit 3.4.

• CMake 2.4.

If you do not already have ITK and CMake installed, they can obtained via the Insight Toolkit Website:
http://www.itk.org.

Note that other versions of the Insight Toolkit are also available in the testing framework of the Insight
Journal. Please refere to the following page for details:

http://www.insightsoftwareconsortium.org/wiki/index.php/IJ-Testing-Environment

If you wish to add to or modify the command line parameters, you will need the GenerateCLP program
which is part of the Slicer3 application. Refer to the following pages for details:

http://www.slicer.org

http://www.na-mic.org/Wiki/index.php/Slicer3:Execution_Model_Documentation

5 Building BRAINSFit

The normal steps for building and installing BRAINSFit are as follows:

• Build and install CMake

• Build and (optionally) install the Insight Toolkit (ITK)

• Configure and build BRAINSFit

The first two steps are amply covered in the documentation for those prerequisite packages. Building
BRAINSFit itself involves the following steps:

9

• Untar (or checkout from version control) the BRAINSFit distribution.

• create an empty directory to build the program in.

• run cmake in the build directory, pointing to the source code directory

• Once successfully configured, run make to build the program

• Optionally, install the program

The following shell script accomplishes all these steps:

Create a directory to hold source and build directory
mkdir -p BRAINSFit-sandbox
cd BRAINSFit-sandbox

#
check BRAINSFit out from the NITRC svn server
svn checkout https://www.nitrc.org/svn/multimodereg

make directory for out-of-source build
mkdir BRAINSFit-build
#
go into build directory
cd BRAINSFit-build
#
run CMake to configure. ITK is only required prerequisite
If you have a Slicer3 build on your system, adding
-DGenerateCLP_DIR:PATH=${SlicerSource}/Libs/GenerateCLP
-DGENERATECLP_EXE:FILEPATH=${SlicerBuild}/bin/GenerateCLP
#
will allow you to change the command line description in BRAINSFit.xml
${SlicerSource} being the Slicer source directory and ${SlicerBuild} the
build directory
#
$ITKDIR -- either PREFIX/lib/InsightToolkit for an installation or the root
of the build tree.
cmake -DITK_DIR:PATH=$ITKDIR ../multimodereg
make
make test

6 Project Home on NITRC.org

The BRAINSFit project is hosted on http://www.nitrc.org, The Neuroimaging Informatics Tools and
Resources Clearinghouse. The project page itself is

http://www.nitrc.org/projects/multimodereg

References 10

NITRC is a project of the US National institutes of Health, started to give researchers access to neuroimaging
software tools. Every project on NITRC has a variety of resources presented on the project page: a source
code repository, bug tracker, mailing lists, forums, etc.

The most current source code (including the LaTex source files for this document) are always available
from the project page given above. Users are encouraged to register on the NITRC page, so they can ask
questions, make feature requests, share use experiences, and contribute bug reports.

References

[1] Luis Ibanez, Will Schroeder, Lydia Ng, and Josh Cates. The ITK Software Guide: The Insight Segmen-
tation and Registration Toolkit (version 1.4). Kitware Inc., September 2003. (document), 1

[2] V.A. Magnotta, G. Harris, N.C. Andreasen, W.T.C. Yuh, and D. Heckel. Structural MR image pro-
cessing using the BRAINS2 toolbox. Computerized Medical Imaging and Graphics, 26:251–64, 2002.
(document)

[3] Steve Pieper. The na-mic kit: Itk, vtk, pipelines, grids and 3d slicer as an open platform for the medical
image computing community. Proceedings of IEEE International Symposium on BioMedical Imaging:
From Nano to Macro 2006, pages 698–701, March 2006. 1

