ComposeRGBAImageFilter

Release 1.0
Dan Mueller!

May 11, 2007

'Queensland University of Technology, Brisbane, Australia

Abstract

This article presents the itk: :ComposeRGBAImageFilter.

Keywords: ITK, Compose

1 Introduction

The existing itk: :ComposeRGBImageFilter allows usersto compose a multi-channel (RGB) image from three scalar
inputs. Currently its RGBA counterpart does not exist. This article presents the itk::ComposeRGBAImageFilter.

2 Implementation

A number of additions to the ITK Common namespace must be made to accommodate the proposed
itk::ComposeRGBAImageFilter:

1. Add an #include "itkNumericTraitsRGBAPixel.h" to the bottom of itkRGBAPixel.h.
2. Add itkNumericTraitsRGBAPixel.h and itkNumericTraitsRGBAPixel.cxx tothe Common directory.

3. Add itkNumericTraitsRGBAPixel.cxx to the list of sources files in Common/CMakeLists.txt.

a) Inputi b) Input2 c) Input3 d) Input4 e) Output

Figure 1: Results of the ComposeRGBA test.

0N O WND =

Qoo o ads b DDA DNDBADAEDOWOWWO®WOWOWWWWMNDNDNPDNDDNDPDDNDNDDNDND =S = = 2
OO P WON—=0O0CONOODAPRWODN—22O0OONOODOAPRPRWN 2O OONOODAPRPRWN—-LOOONOOOGAWN-—=OO

ComposeRGBAImageFilter

Ak ====================—=—=—=—=———=—=—————=———— === ===
Program: Insight Segmentation & Registration Toolkit
Module: SRCSfile: itkComposeRGBAImageFilter.h,v $
Language: C++
Date: SDate: 2007/05/10 07:00:00 $
Version: SRevision: 1.0 $

Copyright (c) Insight Software Consortium. All rights reserved.

See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY, without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the above copyright notices for more information.

#ifndef
#define

_itkComposeRGBAImageFilter_h
_itkComposeRGBAImageFilter_h

#include "itkNaryFunctorImageFilter .h"
#include "itkRGBAPixel .h"
#include "itkNumericTraitsRGBAPixel .h"

/*+ \class ComposeRGBAImageFilter

* \brief Implements pixel-wise composition of an RGBA pixel from four scalar images.

*

* This filter receives four scalar images as input. Each image containing
* one of the RGBA components of a color image. The filter produces as output an
* RGBA image in which the four components have been unified. The Component

* type 1is preserved from the PixelType of the input images.

*
* \ingroup IntensityImageFilters
*/

namespace itk

{
namespace Functor {
template< class TInput >

class ComposeRGBA
{

public:
typedef RGBAPixel<TInput> OutputType;
ComposeRGBA () {}
“ComposeRGBA () {}
bool operator!=(const ComposeRGBA &) const

{

return false;

}

bool operator==(const ComposeRGBA & other) const
{
return ! (*this != other);
}
inline OutputType operator () (const std::vector< TInput > & in

{

)

ComposeRGBAImageFilter 3

57 OutputType pixel;

58 pixel.Set(in([0], in[l], in[2], in[3]);

59 return pixel;

60 }

61 };

62 |}

63

64 template <typename TInputlImage,

65 typename TOutputImage=

66 Image< RGBAPixel< ITK_TYPENAME TInputImage::PixelType >,

67 ::itk::GetImageDimension<TInputImage>::ImageDimension > >
68 class ITK_EXPORT ComposeRGBAImageFilter

69 public

70 NaryFunctorImageFilter <TInputImage, TOutputlImage,

71 Functor::ComposeRGBA< ITK_TYPENAME TInputImage::PixelType > >
72 |

73 public:

74 /#*% Standard class typedefs. #*/
75 typedef ComposeRGBAImageFilter Self;
76 typedef NaryFunctorImageFilter <TInputImage, TOutputImage,

77 Functor::ComposeRGBAKITK_TYPENAME TInputImage::PixelType > >
Superclass;

78 typedef SmartPointer<Self> Pointer;

79 typedef SmartPointer<const Self> ConstPointer;

80

81 typedef typename Superclass::OutputImageType OutputImageType;

82

83 /*+ Method for creation through the object factory. */

84 itkNewMacro (Self);

85

86 protected:

87 ComposeRGBAImageFilter () {}

88 virtual “ComposeRGBAImageFilter () {}

89

90 private:

91 ComposeRGBAImageFilter (const Selfs&); //purposely not implemented

92 void operator=(const Selfs); //purposely not implemented

93

94

95 };

96

97 } // end namespace 1tk

98

99

100 #endif

Listing 1: itkComposeRGBAImageFilter.h.

	1 Introduction
	2 Implementation
	3 Code

