
The MITK Approach

Ivo Wolf, Marco Nolden, Thomas Böttger, Ingmar Wegner, Max Schöbinger,
Mark Hastenteufel, Tobias Heimann, Hans-Peter Meinzer, and Marcus Vetter

Div. Medical and Biological Informatics/B010,
German Cancer Research Center, Heidelberg, Germany

email: i.wolf@dkfz.de�

Abstract. The Medical Imaging Interaction Toolkit (MITK) is an open-
source toolkit for the development of interactive medical image analysis
software. MITK is based on the open-source Insight Toolkit (ITK) and
Visualization Toolkit (VTK) and extends them with features required for
interactive systems. ITK is used for the algorithmic scope and general
infrastructure, VTK for visualization. Key features of MITK are the co-
ordination of multiple 2D and 3D visualizations of arbitrary data, a gen-
eral interaction concept including undo/redo, and its extendibility and
flexibility to create tailored applications due to its toolkit character and
different layers of hidden complexity. The paper gives a brief introduction
into the overall concepts and goals of the MITK approach. Suggestions
and participation are welcome. MITK is available at www.mitk.org.

1 Introduction

Today, the development of interactive software for medical image analysis is
supported by either extendable applications (e.g., 3D-Slicer, Analyze, Amira,
VolView) or complete development environments (e.g., AVS, Khoros, MeVis-
Lab, SCIRun). In contrast, the MITK approach is to provide a toolkit on which
applications – for specific problems or general use – and development environ-
ments can be built upon.

ITK [1] and VTK [2] are successful and well-designed toolkits for the algorith-
mic and visualization aspect of medical image analysis. Coordination of different
types of visualizations and interactions, both important for imaged-based med-
ical software, are not within their scope. MITK adds support for this and other
features common to interactive systems. The goal is that specific realizations of
the added aspects (e.g., interactions) can as powerfully be combined as this is
the case for algorithms and visualizations in ITK and VTK (section 2). Aspects
covered by ITK or VTK are re-used from these toolkits (section 3). Different
layers of hidden complexity allow re-use in-the-small and in-the-large to sup-
port the development of applications with highly specialized features as well as
mainstream tasks (section 4).
� Partly supported by the Deutsche Forschungsgemeinschaft (DFG) within the project

SFB 414 “Information Technology in Medicine – Computer and Sensor Supported
Surgery”.



ellipse

reformatted
original slice

sliced
segmentation

position of the
other 2 slices

ellipse

volume rendered
segmentation

position of the
3 slices

ellipse

ellipsoid

original slice

reformatted
original slice

sliced
segmentation

position of the
other 2 slices

position of the
other 2 slices

sliced
segmentation

ellipseellipse

reformatted
original slice

sliced
segmentation

sliced
segmentation

position of the
other 2 slices
position of the
other 2 slices

ellipseellipse

volume rendered
segmentation

volume rendered
segmentation

position of the
3 slices

position of the
3 slices

ellipseellipse

ellipsoidellipsoid

original slice

reformatted
original slice

sliced
segmentation

sliced
segmentation

position of the
other 2 slices
position of the
other 2 slices

position of the
other 2 slices
position of the
other 2 slices

sliced
segmentation

sliced
segmentation

Fig. 1. Left: Four consistent views of 6 data objects (original image, segmentation,
ellipsoid, 3 slices) require coordination of 20 scene-graph objects in four scene-graphs.
In MITK, only the data objects need to be added to the MITK data tree (right).

2 Coordination of visualizations and interactions

Most object-oriented visualization libraries use a scene-graph concept to define
the contents of a display area. Consequently, different contents require different
scene-graphs. From this point of view, the four display areas of the application
shown in figure 1 have four different contents requiring four different scene-graphs
and altogether (at least) 20 objects within the scene-graphs. On the other hand,
the four display areas all show the same data, but in different ways (orthogonal
reformations, 3D view).

MITK uses a so-called data tree to define the contents of multiple (or all)
display areas, instead of an individual scene-graph per display area. Thus, the
central elements, on which visualization and interaction objects act, are the data,
leading to a model -view -controller -like design of MITK. Changing a data object,
or its position, orientation, color etc. results in a consistent change in all display
areas using the respective data tree.

Interactions of the user with the data are performed directly on the data. This
ensures a consistent behavior in all views and enables to define the interaction
(in many cases) regardless whether it is done in a 2D or 3D view or with a 3D
input device. Since more complex interactions with data consist of several states,
interactor-classes are realized as state-machines in MITK.

MITK takes care of the conversion from input coordinates (e.g., position of
the mouse cursor) to 3D world-coordinates in a coordinate-system in millimeters
(not pixels!). Conversions to/from intrinsic coordinates of a data object (e.g.,
pixels in case of an image) are uniformly performed using so-called geometry
frame objects [3], which are used to position data objects in space and define
the area or volume to be rendered (e.g., reformatted slice, including curved
reformations [4]).



ITK

FLmitk

FLTK

Qmitk

Qt

MITK VTK

Fig. 2. Illustration of MITK’s relation to ITK, VTK and GUI toolkits. Most MITK
classes are derived from ITK, whereas VTK classes are only used. MITK itself is
independent of the GUI library. GUI dependent parts contain optional add-ons, which
are currently implemented for Qt (Qmitk). A small example for FLTK exists.

3 Re-use of open-source code and concepts

One advantage of open-source software are the excellent possibilities of re-use
and extension. Our general idea is to write algorithms for ITK, visualization
methods for VTK, and organize both including user interaction in MITK. Thus,
MITK re-uses virtually everything available from ITK and VTK. In contrast to
most other software that simply uses ITK and/or VTK, MITK’s way of re-use
is much deeper.

Most MITK classes are derived from ITK classes, which allows to re-use
the smart-pointer-, time-stamp-, observer-, and debugging-mechanisms of ITK.
MITK’s data objects contain either ITK or VTK data objects and methods are
provided to access the data from the respective other toolkit. To allow different
visualizations of data objects, e.g., 2D and 3D views, MITK uses a variant of
VTK’s idea to have a so-called mapper object for creating graphic primitives
for each data object. Internally, VTK is used, coordinated by MITK to keep the
displays consistent.

Pipeline concepts have proved to be a powerful way to combine algorithms,
especially for interactive applications. Instead of inventing yet another pipeline
concept, the pipeline of ITK is used in MITK, simply by deriving MITK’s data
and algorithmic classes from the respective ITK base-classes. Most algorithmic
classes in MITK are encapsulations of ITK or VTK algorithms for specific tasks,
to adapt them to MITK’s unified coordinate system, and/or to support time-
resolved data.

Furthermore, the software process and most principles of the ITK/VTK style
guide are adopted for MITK. The relations of MITK to ITK and VTK are
illustrated in figure 2. Like ITK and VTK, MITK is an object-oriented, cross-
platform library implemented in C++.

4 Layers of hidden complexity

By definition toolkits aim at providing kits of tools to assist building individual
applications. Pre-defined components for recurring tasks can accelerate devel-
opment, but may reduce the capability to create specific applications. The goal



workspace area

control area

icon/tooltip/…

here: QmitkStdMultiWidget
(four render-windows)

QmitkSliceWidget

mitk::RenderWindow
(base of all render-widgets)

workspace area

control area

icon/tooltip/…

here: QmitkStdMultiWidget
(four render-windows)

workspace area

control area

icon/tooltip/…

workspace area

control area

icon/tooltip/…

here: QmitkStdMultiWidget
(four render-windows)

QmitkSliceWidget

mitk::RenderWindow
(base of all render-widgets)

QmitkSliceWidget

mitk::RenderWindow
(base of all render-widgets)

Fig. 3. Widgets on different layers of hidden complexity within MITK. All visualization
takes place in render-windows (top left), higher-level widgets for visualization just
add control widgets (bottom left) and/or contain several render-windows (central part
of right). Right: MITK functionalities used within an MITK-based plug-in for the
PACS/telemedicine system Chili.

within MITK is to provide different layers of pre-defined components that hide
more and more complexity. Small-scale components can flexibly be combined,
larger entities solve common tasks, inevitably at the expense of flexibility.

The basic MITK component for display is called render-window (as in VTK).
All kinds of visualizations can be rendered into a render-window (figure 3, top
left), thus all higher-level widgets for visualization contain (one or more) render-
windows and just add widgets or convenience methods for controlling the visual-
ization. One example is the QmitkSliceWidget for 2D-slicing through the data,
see bottom left of figure 3. The slicing is controlled by a controller class, which is
invisible and GUI-independent (mitk::SliceNavigationController) [3]. The
currently selected slice number is being displayed using a widget connected to
the controller class, here a slider and a spin-box (QmitkSliderNavigator, GUI-
dependent). Another example is a combination of four render-windows with var-
ious layouts (QmitkStdMultiWidget, central part of figure 3, right).

So-called functionalities are currently the top-most layer of hidden complex-
ity within MITK. Functionalities facilitate the structured combination of mod-
ules. A functionality is a module for a specific task, combining a user interface
with algorithmic function. It consists of (figure 3, right)

– an identification (name of the functionality, icon, tooltip, . . .),
– a workspace area, where the main interaction is taking place,



– a control area containing GUI elements to set parameters, and
– the algorithmic implementation.

Communication between functionalities is largely based on the data tree. Each
functionality accesses the data objects contained in the tree, changes them
and/or creates new data objects. Other functionalities can continue to work
on the changed and/or newly created data tree entries. By that, functionalities
can communicate without becoming dependent on each other.

Furthermore, an add-on to MITK allows to create plug-ins for the PACS/tele-
medicine system Chili (Chili GmbH, Heidelberg, Germany, http://www.chili-
radiology.com). This facilitates the clinical integration of the software, since the
radiologist or surgeon using the MITK-based software find it seamlessly inte-
grated into the workspace he/she is used to.

5 Conclusion

MITK aims at supporting the development of interactive systems from the toolkit
level. MITK is not intended as an application framework, but there are some
optional application-level add-ons to MITK (e.g., functionalities, plug-in inte-
gration). MITK allows the construction of applications specifically tailored for
a medical task, providing only those features to the user (physician) that are
required. Another advantage is that the toolkit can be used within existing soft-
ware.

MITK is available from www.mitk.org via cvs-access or as a zipped-archive
(current version is 0.2). Although already in use for a variety of applications,
there are still lots of ideas for improvements. We soon will add more high-level
modules, e.g., for common tasks as volume-rendering, cropping, or creation of
isosurfaces. Additional layers of hidden complexity may be useful, e.g., visual
programming, or usage of visually created pipelines exported from other tools.
We are open for suggestions. Participation is welcome.

References

1. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Insight
Software Consortium (2003)

2. Schroeder, W.J., Martin, K.M., Avila, L.S., Law, C.C.: The Visualization Toolkit
User’s Guide. Kitware, Inc. (2003)

3. Wolf, I., Vetter, M., Wegner, I., Nolden, M., Böttger, T., Hastenteufel, M.,
Schöbinger, M., Kunert, T., Meinzer, H.P.: The Medical Imaging Interaction Toolkit
(MITK): a toolkit facilitating the creation of interactive software by extending VTK
and ITK. In Galloway, R.L., ed.: SPIE Medical Imaging 2004: Visualization, Image-
Guided Procedures, and Display. Volume 5367. (2004) 16–27

4. Wolf, I., Hastenteufel, M., Wegner, I., Vetter, M., Greil, G., Küttner, A., Claussen,
C.D., Meinzer, H.P.: Curved reformations using the Medical Imaging Interaction
Toolkit (MITK). In Galloway, R.L., Cleary, K.R., eds.: SPIE Medical Imaging 2005:
Visualization, Image-Guided Procedures, and Display. Volume 5744. (2005) 831–838


