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Abstract

Medical image analysis is an important problem relating to the study of various diseases. Since their
inception to MICCAI in 2001, ”deformable organisms” have emerged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation to 3D vasculature and spinal cord segmenta-
tion. Essentially we have developed an artificial life framework that complements classical deformable
models (snakes and deformable meshes) with high-level, anatomically-driven control mechanisms. This
paper describes the integration of deformable organisms into the Insight Toolkit (ITK) www.itk.org .
Our code attempts to bridge the ITK framework and coding style with deformable organism design
methodologies. In the interest of open science, as the framework develops it will serve as a basis for the
community to develop new deformable organisms as well as experiment with those recently published
by our group.
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1 Introduction

In medical image analysis strategies based on deformable models, controlling the deformations of the mod-
els is a desirable goal to produce proper segmentations. Incorporating expert knowledge to automatically
guide deformations cannot be easily and elegantly achieved using the classical deformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOs), are a decision-making framework
for medical image analysis that complements bottom-up, data-driven deformable models with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspired by artificial life modeling concepts.
Intuitive and controlled deformations are carried out through behaviors. Sensory input from image data and
contextual knowledge about the analysis problem govern these different behaviors.

Since their conception in 2001 [2], various DOs-based approaches for medical image analysis have been
developed (Figure 1). In this original work, a variety of DOs where demonstrated with applications to lo-
cating the lateral ventricles, caudate nuclei, and putamina structures in transversal brain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2D angiography. In [3], Hamarneh
and McIntosh augmented DOs to include physically-based and controlled deformations demonstrating an
application to corpus callosum segmentation in mid-sagittal magnetic resonance images (MRI). Recently,
McIntosh and Hamarneh [6] introduced DOs 3D DOs for vascular segmentation and analysis, which take
advantage of their sensors and deformation layer to perform locally optimal vascular-specific filtering. An
extension of that work, [5], introduces DOs for spinal cord segmentation and analysis and demonstrates
extended filters for structures varying from elliptical to tubular. In each case DOs have demonstrated their
key advantages over other leading techniques. Namely, their ability to produce increased accuracy, allow
intuitive user-interaction to control or repair the segmentation where other methods would require being
restarted with some type of parameter adjustment, facilitate greater analysis and labeling abilities than those
methods producing binary outputs, the ready ability to incorporate image or shape-based prior-knowledge,
and a modular framework allowing for incorporating new sensors (image filters), decision models, shape
representations, and deformation mechanisms.

Though a summary is provided here, complete research-oriented look at DOs can be found in [4]. DOs are
built following a multilevel AL modelling approach consisting of four primary layers: cognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOs current state,
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Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-based corpus cal-
losum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D Angiography, 3D ‘spinal crawler’,
and 3D ‘vessel crawler’

anatomical knowledge, and its surrounding environment (the image). Decisions could be made to sense
information, to deform based on sensory data, to illicit help from the user, or to terminate the segmentation
process. All of these actions are described under the behavioral layer of the organism, and they rely upon
both the physical and geometrical layers for implementation. For example, in the context of our ‘vessel
crawlers’ [6], the act of moving towards a sensed target location is described by the ‘growing’ behavioral
method. The cognitive center gathers sensory input using the ‘sense-to-grow’ sensory module, decides the
correct location via the ‘where-to-grow’ decision module, elicits the act of ‘growing’ , and then conforms
to the vascular walls by ‘fitting’. In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequently, we have a framework with
many independent layers of abstraction, each built upon the implementation of independent modules and or
processes.

We begin with a motivation of our framework in section 1.1, and a discussion of the general requirements of
DOs that the framework is set out to meet in 1.1. Sections (2.1-2.7) provide an overview of how each layer
is designed and implemented in the framework. We summarize in section 3. The appendices provide the
most information on using the framework with a requirements listing (section A), examples of layers and
organisms (section B), a guide to building and running your first organism (section D), and information on
extending organisms and the framework (section D).
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1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a closed-source MATLAB framework.
Though straightforward and intuitive in design they are not readily extendable by the general medical im-
age analysis community in this form. ITK, however, enjoys a large user base and exemplifies the notion
of an open-source, adoptable, and extendable framework. Furthermore, the incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image processing functions and libraries, and
straightforward compatibility with the powerful visualization capabilities of the Visualization Toolkit (VTK)
www.vtk.org .

DOs Requirements

DOs are constructed through the realization of many abstract and independent concepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO framework must reflect this modular design by
allowing users to replace one implementation (layer) for another. For example, new shape representations
should be introducible without re-designing existing cognitive layers. To this end, the interface between
layers must be consistent across implementations (plug and play), and clearly defined.

The framework must also be extendable, allowing it to grow and advance as the concept of DOs does. That
is to say, it should support current research into new types of DOs designed for different applications, with
increasingly advanced decision making abilities and deforming abilities.

2 Implementation

This section provides details on the implementation of the I-DO framework. Each section (2.1-2.7) describes
a DO layer in detail within the context of our I-DO framework.

2.1 Organism

The organism is the abstract base class (ABC) that acts as a container for most of the framework. Each
organism posses its world, a control center, a physics layer, and a geometrical layer. It provides public inter-
faces through which users can add deformations and behaviors, as well as attach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the organism class itself is not instantiated.
It is designed as such so that no matter the derivation (type of organism), a DO application can simply call
its associated public interface. Consequently, of most interest are the derived classes themselves.

The itkOrganism derived class can be instantiated and used as a fully functional organism, or can be used
as a base class of another more specialized organism. It inherits from both the Organism ABC, and ITK’s
ImageToImageFilter class. Though many other classes could be used, the ImageToImageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITK filtering pipelines (taking as
input an image and producing as output a segmented image). More details on this derived class are provided
at http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_organism.html .
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Figure 2: The basic outline of our deformable organism framework. Dark arrows represent directions
of communication between objects, while hollow arrows represent one class running another’s public run
method, and encapsulation represents one class containing another. For example, the behavior class controls
the deformations class through the physics class.

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of the organism. It has associated behaviors
and sensory modules, and provides the organism with its ability to make decisions (e.g. next behavior to
run, image data to sense, etc.). It monitors the status of the behaviors, deformations, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the framework obtained through the
use of ABCs, streams, and structures. Through a single list of sensors and behaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physical type regardless of the varying
input requirements they may have. For example, the decision to “translate” will trigger a spatial translation
behavior, which will in turn trigger the appropriate translate deformation as it pertains to the particular
physical layer of the model. All without the cognitive layer having any regard for which derived physical
layer and deformation class, or geometrical layer and shape representation is being called.

The control center accomplishes this by using a “run-by-name” design methodology, where once it decides
upon (or is asked to run) a particular named behavior it will search its list of known behaviors for one with
the matching name.

By calling a control center’s Update method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via the derived classes provided
DecideNextBehavior method). Otherwise, it will check the status of the behavior (via its IsFinished
method) cleaning up after it, and deciding on a new behavior if it has finished, and updating it (Update
method) if it has not.

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_control_center.html
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2.3 Sensor

Organisms perceive their surroundings through sensory modules. They provide a means by which to gather
statistics and characteristics of its own geometry and the world (image data) in which it resides. At any
given time a decision function may possess many different sensory objects, each of which can report back
different sensory information (e.g. gray level intensity, gradient magnitude and direction, texture features,
etc). It is important to note that some sensors will be implementation dependent, while others will not. For
example, it makes no sense to run a vascular bifurcation sensory module on a corpus callosum organism
because the latter is only 2D and has a completely different topology and appearance characteristics.

In order to run a sensor one must use its publicly defined sensorIn and sensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in the parameters a sensor can
have, while still enabling any sensor to be ran abstractly. Through this flexibility users can setup and run
complex pipelines of ITK filters within the sensors, while passing their variety of input requirements in via
the sensorIn type.

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As such, each behavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. To ensure meaningful interaction with
other organisms and users each behavior has a name. So for example, despite the action “running” being
carried out differently by different animals each can always be told to run, or report that it is running. Upon
being executed the behavior simply begins executing its main body. Again, the behavior class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtleties of this class.

Our first simple example behavior is ‘inflate for 30 cycles’. The act of the organism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformation by calling the runDeformation
method of the physics object. The behavior then sets its status to incomplete. At the next run of its
decideNextBehavor method the control center checks the status of the inflate behavior, and upon see-
ing incomplete runs the behavior’s update method. Now upon executing, the behavior checks to see if its
ran for 30 cycles by examining the physics objects time counter, if so it sets its status to complete. Now
suppose a more complex behavior inflates, then moves forward. First it runs its inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its status. Upon confirming that its
first sub-behavior is complete it moves forward, and sets its own status to complete.

It is also possible for the decideNextBehavior method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. Of course, a behavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a larger action. This enables significant levels of
abstraction, allowing users to issue single commands and carry out vast and complex sequences of actions,
or small exact ones. For example, one could instruct the organism to simply inflate, or one could tell it to
segment which includes inflation.

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html
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2.5 Physics

The physics layer is responsible for simulating the deformations and handling the organisms interaction with
its environment through external forces. Each physics object possesses a list of executable deformations and
a geometric object. The main public interface of interest is the simulate method, which actually causes
forces to be calculated and exerted. Again, as the physics layer is merely an ABC, it is of much more
interest to discuss this class through an example of one of its derived classes.

An example derived class is the Euler physics object. This implementation relies on the simulation of a
spring-mass system to perform deformations. When the organism calls the simulation method, the Euler
object runs its simulation cycle for a set number of times, and then increments the global timer. During the
simulation cycle the organism has control of the CPU, and can not be interrupted. Consequently, the length
of this cycle should be kept short in order to allow the organism to check behavior status states, run decision
functions, and check its message board. If the length of the cycle is longer than the time required to run a
single behavior, then the organism will basically be idle for the remaining iterations. However, the running
deformation also has a runtime set by its calling behavior. So the physics object can stop simulating after
that runtime has expired.

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_physics.html

2.6 Deformations

Deformations manipulate the geometry of the organism. For example, in a physically-based spring-mass
implementation deformations move nodes, actuate springs, apply forces, and basically deform the geomet-
rical model. Much like behaviors, each deformation has an associated status and runtime, as well as run
method for its public interface. However, in this case deformations do not posses many sub-deformations.

As an example let us consider the inflate deformation. Upon being executed by an associated behavior it
begins applying forces normal to the model’s surface, causing it to inflate. In the case of a spring-mass
system these forces may be carried out by applying forces on individual nodes, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflation once the organism has passed from a
dark to bright (for example when segmenting dark object on a white background) is delegated to the control
center of the organism, and does not take place here. Instead only low-level tasks like actuating springs,
moving nodes, etc are carried out. This enables the execution of both prior and learned deformations [7],
where learned deformations are carried out by the associated learned behavior causing a sequence of spring
actuations. However, if the underlying shape representation is level sets based the inflation takes the form
of adding a constant to the embedding function in order to expand the zero-level set.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles adding and removing
nodes, as well as reading and writing the meshes to file. Consider two different example derived classes: the
VectorGeometry class, and the TubularGeometry class. The VectorGeometry class is implemented entirely
with vector geometry, while the TubularGeometry class is also derived from an ITK spatialobjects class.
Both classes provide the same public interface in terms of getting nodes, setting nodes, writing to file,
reading from file, etc. However, they each allow the user to take advantage of their inherit properties. So the
user can write a custom sensory class, that uses the additional functionality of the TubularGeometry class
without having to modify any internal code of the organism itself. In essence, the user can be dependent on
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the implementation when they want to be, and remain totaly independent in other situations by sticking to
the Geometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segmentation and analysis that offers
both great flexibility and rigid design enforcement, thereby, ensuring maximum reusability, portability and
sustainability. Our framework makes use of many powerful features in ITK including filters, meshes, file
IO, and spatial objects. We have also created a robust physically-based deformations layer, which itself is
a strong contribution to ITK as the current implementation is reported to have numerous problems. With
the geometrical layers binaryImageToMesh functionality, one can easily create deformable models and de-
form them using our spring-mass deformation system or our level-set implementation. Furthermore, the
added ability to convert BYU surfaces into meshSpatialObjects and consequently, into deformable organ-
isms should prove a useful tool allowing level-set refinement, or physics-based interaction with segmentation
results of various existing projects.

4 Acknowledgements

We would like to thank Andy Rova for his development of the Phys LevelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application, and Aaron Ward for his technical expertise
and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building the provided viewer has additional
requirements:

• VTK 5.0.0 http://www.vtk.org

• SOViewer (Feb 8, 2006) http://www.vtk.org/Wiki/SOViewer

• KWWidgets (Feb 8, 2006) http://www.kwwidgets.org/Wiki/KWWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in section 2 are available, with details provided in the
frameworks online documentation.

• Geom MeshSpatialObject<dType,nDims, MType, VType>

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html asdfasdf
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• Phys Euler<Type,nDims,MType,VType>

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_phys___euler.html

• Beh TranslateAll<Type,nDims>

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html

• Ctrl ScheduleDriven<class Type, int nDims>

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html

• Sense Gradient<DataType,TInputImage, TGradientImage, nDims>

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html

B.2 Deformable Organism Examples

B.3 DefOrgExamples

There are numerous example DOs included with the framework.

• itkOrganism<ImageType, ImageType, GradientImageType, dType, nDims> A derived organism
based on a itk::ImageToImageFilter that contains no default layers.

• Org LevelSetSchedule<ImageType, ImageType, GradientImageType, dType, nDims> A
geodesic active contours [1] based DO that uses a schedule driven cognitive layer.

• Org EulerSchedule<ImageType, ImageType, GradientImageType, dType, nDims> A 3D
spring-mass [6] based DO that uses a schedule driven cognitive layer.

C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO framework, that allows its users to visualize
the geometry of created DOs as well as observe their deformations in real time. It gives the user the ability to
load DOs as dll files, while allowing the developer to define customized interfaces via the DefOrgAdapter
class. The GUI is based on, and therefore requires, KWWidegets, VTK, and SOViewer. Future versions
will facilitate interaction with DOs through mouse click driven forces, and possibly other forms of input.
Complete documentation of the viewer will be made available at a later date, but many details reside in its
doxygen.

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html

D Guide to users

This section provides information to those who wish to use, or contribute to the framework.
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Hello I-DO

In this section we present a simple ”Hello [I-DO] World” example that provides a step by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (see www.itk.org ).

2. Download and compile the I-DO source code using CMake (www.cmake.org ) and the CMakeLists.txt
file found in the root-most directory. Set the itk utilities path to the utilities folder found in your ITK
source directory.

3. Open defOrgs/examples/basic/CMakeLists.txt using Cmake and configure. Setting the
IDO BUILD PATH to wherever you built I-DO in step 2, and the IDO PATH to YourLoca-
tion/defOrgs/source.

4. Compile the created project.

5. Run from command line, providing input and output image names, a schedule name, and a mesh
name. (e.g. test.mhd out.mhd eulerSchedule3D.txt cubeMesh3D.meta )

6. The DO will run, and output a final binary image using the file name provided.

Users can follow these procedures for any of the provided examples in the examples directory.

Building A Deformable Organism

This example walks the reader through creating a DO by individualy instantiating and attaching the layers.
This is contrast to using an already created DO, which can be instantiated , setup, and used just like any ITK
filter.

The first step is to chose instantiate a DO shell (one having no built in layers) using the standard ITK
itk::SmartPointer approach. In this case the DO is an ITK itk::ImageToImageFilter , and must be
provided with an input image via the SetInput method.

typedef itk::ItkOrganism <ImageType, ImageType, GradientImageType, float, 3> organismType;
organismType::Pointer testOrg = organismType::New();
std::cout << "Organism created..." << std::endl;
testOrg->SetInput(reader->GetOutput());

Next we will instantiate a sensor to calculate the gradient information used as an external force during the
deformation simulations by the Physics layer.

typedef Sense_Gradient<float,ImageType,GradientImageType,3> gradientSensorType;
gradientSensorType::Pointer gradientSensor = gradientSensorType::New();

The sensor requires its publicly defined sensorIn as input. Here we create a pointer to the class, and set its
values. This allows all sensors to be ran from a common run method, with their own customized input.

gradientSensorType::sensorIn::Pointer input = gradientSensorType::sensorIn::New();
input->sigma = 1.0;
reader->Update();
input->imageIn = reader->GetOutput();
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The gradient sensor can then be ran.

gradientSensor->run(input);

Finally, its output can be obtained by constructing an sensorOut itk::SmartPointer and providing the
appropriate downcast on the pointer returned by the getOutput method.

gradientSensorType::sensorOut::Pointer output = (gradientSensorType::sensorOut *) (gradientSensor->getOutput()).GetPointer();

Next create the Physics and Geometrical layers. Notice that the type of external force image is provided
as an input type to the Physics layer.

//Instantiate geomtery and physics layers
typedef Phys_Euler<float,GradientImageType,3> PhysLayerType;
typedef Geom_MeshSpatialObject<float,3> GeometricType;

PhysLayerType::Pointer physLayer = PhysLayerType::New();
GeometricType::Pointer geomLayer = GeometricType::New();

Then set the Physics layer to use the external force image calculated by the gradient sensor and the
newly constructed Geometrical layer, and setup the topology of the Geometric layer (in this case an
ITK itk::MeshSpatialObject ). Finally, attach both to the Organism .

physLayer->setExternalForces((void *) &(output->imageOut));
physLayer->setGeometry(geomLayer);
std::cout << "External forces set." << std::endl;

geomLayer->readTopologyFromFile(topologyInputFileName);
std::cout << "Topology read from ’" << topologyInputFileName << "’..." << std::endl;

testOrg->setPhysicsLayer(physLayer);
testOrg->setGeometricLayer(geomLayer);
std::cout << "Physics and Geometric layers added..." << std::endl;

Create a Cogntive layer, set its appropriate options, and attach it to the DO. In this case it only requires a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgL = Ctrl_ScheduleDriven<float, 3>::New();
cgL->setSchedule(scheduleFileName);
testOrg->setCognitiveLayer(cgL);

Now begin creating and attaching behaviors, and deformations. Note in this case, the behaviors and defor-
mations do not require any additional parameters or settings.

Beh_TranslateAll<float, 3>::Pointer beh1 = Beh_TranslateAll<float,3>::New();
Beh_UniformScale<float, 3>::Pointer beh2 = Beh_UniformScale<float,3>::New();
Def_Translation<float, 3>::Pointer def1 = Def_Translation<float,3>::New();
Def_UniformScale<float, 3>::Pointer def2 = Def_UniformScale<float,3>::New();
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testOrg->addBehaviour(beh1);
testOrg->addBehaviour(beh2);
testOrg->addDeformation(def1);
testOrg->addDeformation(def2);

The Organism is ready to run. Calling Update() on the writer will cause a single run of the DO, which will
simulate for one unit of DO time. Here we simulate for 25 units of DO time before updating the writer.

writer->SetInput(testOrg->GetOutput());
try
{

std::cout << "Running organism..." << std::endl;
for(int i=0; i<25;i++)
{

testOrg->run();
std::cout << "one run" << std::endl;

}
writer->Update();

}
catch(itk::ExceptionObject & err)
{

std::cout << "ExceptionObject caught!" << std::endl;
std::cout << err << std::endl;
return -1;

}

Finally, in addition to the binary output available on the writer the DO’s mesh can be written back to file.

testOrg->writeNodesToFile(nodeOutputFileName);
std::cout << "Nodes written to ’" << nodeOutputFileName << "’." << std::endl;

Extending Existing DOs

Extending existing organisms is as easy as following the Building A Deformable Organism example and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in this document in a later revision.
In the mean time, interested users are referred to the doxygen documentation which outlines how each pure
virtual function of the ABCs should be defined in a derived class. We will also provide skeleton code
generators, that will give those wishing to create new layers a “fill in the blanks” option.

http://www.sfu.ca/ ˜cmcintos/IDO/doxygen/html/index.html
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Abstract

Medical image analysis is an important problem relating to the study of various diseases. Since their
introduction to MICCAI in 2001, ”deformable organisms” have emerged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation to 3Dvasculature and spinal cord segmen-
tation. Essentially we previously have developed an artificial life framework that complements the
geometrical and physical layers of classical deformable models (snakes and deformable meshes) with
high-level behavioral and cognitive layers that facilitate anatomically-driven control mechanisms. This
paper describes the integration of deformable organisms into the Insight Toolkit (ITK)www.itk.org . In
our proposed implementation we attempt to bridge the ITK framework and coding style with deformable
organism design methodologies. In the interest of open science, as the framework develops it will serve
as a basis for the community to develop new deformable organisms as well as experiment with those
recently published by our group. Further, as the design of the ITK Deformable Organisms (I-DO) is
highly modular, researchers and developers can exchange components (spatial objects, dynamic simula-
tion engines, image sensors, etc) allowing in the future forfast development of new custom deformable
organisms for different clinical applications.
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1 Introduction

In medical image analysis strategies based on deformable models, controlling the deformations of the mod-
els is a desirable goal to produce proper segmentations. Incorporating expert knowledge to automatically
guide deformations cannot be easily and elegantly achieved using the classical deformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOs), area decision-making framework
for medical image analysis that complements bottom-up, data-driven deformable models with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspired byartificial life modeling concepts.
Intuitive and controlled deformations are carried out through behaviors. Sensory input from image data and
contextual knowledge about the analysis problem govern these different behaviors.

Since their introduction in 2001 [3], various DOs-based approaches for medical image analysis have been
developed (Figure1). In this original work, a variety of DOs where demonstrated with applications to lo-
cating the lateral ventricles, caudate nuclei, and putamina structures in transversal brain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2D angiography. In [4], DOs were
augmented to include physically-based and controlled deformations demonstrating an application to corpus
callosum segmentation in mid-sagittal magnetic resonance images (MRI). Recently, DOs were extended to
3D and applied to vascular segmentation and analysis. The so called ‘vessel crawlers’ were equipped with
sensors, decision modules, and deformation layers suited for vasculature [7]. An extension of that work
introduces DOs for spinal cord segmentation and analysis and demonstrates the ability to efficiently replace
modules of existing DOs to create new solutions. The ‘spinal crawlers’ no longer possessed a decision mod-
ule to detect branching and their sensors were adapted to detect elliptical cross sections [6]. In each case
DOs have demonstrated their key advantages over other leading techniques. Namely, their ability to pro-
duce increased accuracy, allow intuitive user-interaction to control or repair the segmentation where other
methods would require being restarted with some type of parameter adjustment, facilitate greater analysis
and labeling abilities than those methods producing binary outputs, the ready ability to incorporate image
or shape-based prior-knowledge, and a modular framework allowing for incorporating new sensors (image
filters), decision models, shape representations, and deformation mechanisms.
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Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-

based corpus callosum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D An-

giography, 3D ‘spinal crawler’, and 3D ‘vessel crawler’. Related images and videos can be found at

http://mial.fas.sfu.ca/researchProject.php?s=157

Though a summary is provided here, a complete research-oriented look atDOs can be found in [5]. DOs are
built following a multilevel AL modelling approach consisting of four primary layers: cognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOs current state,
anatomical knowledge, and its surrounding environment (the image). Decisions could be made to sense
information, to deform based on sensory data, to illicit help from the user, or to terminate the segmentation
process. All of these actions are described under the behavioral layer of the organism, and they rely upon
both the physical and geometrical layers for implementation. For example, in thecontext of our ‘vessel
crawlers’ [7], the act of moving towards a sensed target location is described by the‘growing’ behavioral
method. The cognitive center gathers sensory input using the‘sense-to-grow’sensory module, decides the
correct location via the‘where-to-grow’decision module, elicits the act of‘growing’ , and then conforms
to the vascular walls by‘fitting’ . In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequently,we have a framework with
many independent layers of abstraction, each built upon the implementation ofindependent modules and or
processes.

We begin with a motivation of our ITK-Deformable Organisms (I-DO) framework in section1.1, and a
discussion of the general requirements of DOs that the framework is set out to meet in1.2. Sections (2.1-2.7)
provide an overview of how each layer is designed and implemented in the framework. We summarize in
section3. The appendices provide the most information on using the framework with a requirements listing

http://mial.fas.sfu.ca/researchProject.php?s=157
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(sectionA), examples of layers and organisms (sectionB), a description of our visual interface (sectionC),
a guide to building and running your first organism (sectionD), and information on extending organisms
and the framework (sectionD).

1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a closed-source MATLAB framework.
Though straightforward and intuitive in design they are not readily extendable by the general medical im-
age analysis community in this form. ITK, however, enjoys a large user baseand exemplifies the notion
of an open-source, adoptable, and extendable framework. Furthermore, the incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image processing functions and libraries, and
straightforward compatibility with the powerful visualization capabilities of the Visualization Toolkit (VTK)
www.vtk.org .

1.2 DOs Requirements

DOs are constructed through the realization of many abstract and independent concepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO frameworkmust reflect this modular design by
allowing users to replace one implementation (layer) for another. For example, new shape representations
should be introducible without re-designing existing cognitive layers. To this end, the interface between
layers must be consistent across implementations (plug and play), and clearly defined.

The framework must also be extendable, allowing it to grow and advance asthe concept of DOs does. That
is to say, it should support current research into new types of DOs designed for different applications, with
increasingly advanced decision making and deformation abilities.

2 Implementation

This section provides details on the implementation of the I-DO framework. Eachsection (2.1-2.7) describes
a DO layer in detail within the context of our I-DO framework. A high level overview of the DOs framework
is shown in Figure2.

2.1 Organism

The organism is the abstract base class (ABC) that acts as a container for most of the framework. Each
organism posses its world, a control center, a physics layer, and a geometrical layer. It provides public inter-
faces through which users can add deformations and behaviors, as well as attach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the organism class itself is not instantiated.
It is designed as such so that no matter the derivation (type of organism), aDO application can simply call
its associated public interface. Consequently, of most interest are the derived classes themselves.

The itkOrganism derived class can be instantiated and used as a fully functional organism,or can be used
as a base class of another more specialized organism. It inherits from boththe Organism ABC, and ITK’s
ImageToImageFilter class. Though many other classes could be used, the ImageToImageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITK filtering pipelines (taking as

www.vtk.org
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Organism

Control Center

Sensors Behaviors

Decisions

Environment

UserUser

Geometric

Physics

Deformations

Figure 2: The basic outline of the deformable organism framework. Dark arrows represent directions of
communication between objects, while hollow arrows represent one class running another’s publicrun
method, and encapsulation represents one class containing another. Forexample, the behavior class controls
the deformations class through the physics class.

input an image and producing as output a segmented image). More details on this derived class are provided
at http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_organism.ht ml .

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of the organism. It has associated behaviors
and sensory modules, and provides the organism with its ability to make decisions (e.g. next behavior to
run, image data to sense, etc.). It monitors the status of the behaviors, deformations, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the framework obtained through the
use of ABCs, streams, and structures. Through a single list of sensorsand behaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physicaltype regardless of the varying
input requirements they may have. For example, the decision to “translate” willtrigger a spatial translation
behavior, which will in turn trigger the appropriate translate deformation as itpertains to the particular
physical layer of the model. All without the cognitive layer having any regard for which derived physical
layer and deformation class, or geometrical layer and shape representation is being called.

The control center accomplishes this by using a “run-by-name” design methodology, where once it decides
upon (or is asked to run) a particular named behavior it will search its list ofknown behaviors for one with
the matching name.

By calling a control center’sUpdate method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via the derived classes provided
DecideNextBehavior method). Otherwise, it will check the status of the behavior (via itsIsFinished
method), then clean up (CleanUp method) and decide on a new behavior if it has finished, or update it

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_organism.html
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(Update method) if it has not.

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_control_cen ter.html

2.3 Sensor

Organisms perceive their surroundings through sensory modules. They provide a means by which to gather
statistics and characteristics of its own geometry and the world (image data) in which it resides. At any
given time a decision function may possess many different sensory objects, each of which can report back
different sensory information (e.g. gray level intensity, gradient magnitude and direction, texture features,
etc). It is important to note that some sensors will be implementation dependent, while others will not. For
example, it makes no sense to run a vasculature bifurcation sensory module on a corpus callosum organism
because the latter is only 2D and has a completely different topology and appearance characteristics.

In order to run a sensor one must use its publicly definedsensorIn and sensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in the parameters a sensor can
have, while still enabling any sensor to be ran abstractly. Through this flexibility users can setup and run
complex pipelines of ITK filters within the sensors, while passing their variety of input requirements in via
the sensorIn type.

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As such, each behavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. To ensure meaningful interaction with
other organisms and users each behavior has a name. So for example, despite the action “running” being
carried out differently by different animals each can always be told to run, or report that it is running. Upon
being executed the behavior simply begins executing its main body. Again, the behavior class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtleties of this class.

The first simple example behavior is ‘inflate for 30 cycles’. The act of the organism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformation by calling therunDeformation
method of the physics object. The behavior then sets its status to incomplete. At the next run of its
decideNextBehavor method the control center checks the status of the inflate behavior, and upon see-
ing incomplete runs the behavior’supdate method. Now upon executing, the behavior checks to see if
its ran for 30 cycles by examining the physics objects time counter, if so it sets itsstatus tocomplete .
Now suppose a more complex behavior inflates then moves forward. First itruns its inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its status. Upon confirming that its
first sub-behavior is complete it moves forward, and sets its own status tocomplete .

It is also possible for thedecideNextBehavior method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. Of course, a behavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a larger action. This enables significant levels of
abstraction, allowing users to issue single commands and carry out vast and complex sequences of actions,
or small exact ones. For example, one could instruct the organism to simply inflate, or one could tell it to
segment which includes inflation [2].

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_behavior.ht ml

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_control_center.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html
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2.5 Physics

The Physics layer is responsible for simulating the deformations and handling the organismsinteraction
with its environment through external forces. Each physics object possesses a list of executable deformations
and a geometric object. The main public interface of interest is the simulate method,which actually causes
forces to be calculated and exerted. Again, as the physics layer is merely an ABC, it is of much more interest
to discuss this class through an example of one of its derived classes.

An example derived class is thePhys Euler physics object. This implementation relies on the simulation
of a spring-mass system to perform deformations. When the organism callsthe simulation method, the
Phys Euler object runs its simulation cycle for a set number of times, and then increments theglobal
timer. During the simulation cycle the physics layer has control of the CPU, andcan not be interrupted.
Consequently, the length of this cycle should be kept short in order to allowthe organism to check behavior
status states, run decision functions, etc. If the length of the cycle is longer than the time required to run a
single behavior, then the organism will basically be idle for the remaining iterations. However, the running
deformation also has a runtime set by its calling behavior. So the physics object can stop simulating after
that runtime has expired.

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_physics.htm l

2.6 Deformations

The Deformation classes manipulate the geometry of the organism. For example, in a physically-based
spring-mass implementation deformations move nodes, actuate springs, apply forces, and basically deform
the geometrical model. Much like behaviors, each deformation has an associated status and runtime, as
well as run method for its public interface. However, in this case deformations do not posses many sub-
deformations.

As an example let us consider the inflate deformation. Upon being executed by an associated behavior it
begins applying forces normal to the model’s surface, causing it to inflate.In the case of a spring-mass
system these forces may be carried out by applying forces on individual nodes, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflation once the organism has passed from
dark to bright (for example when segmenting dark object on a white background) is delegated to the control
center of the organism, and does not take place here. Instead only low-level tasks like actuating springs,
moving nodes, etc are carried out. This enables the execution of both priorand learned deformations [8],
where learned deformations are carried out by the associated learned behavior causing a sequence of spring
actuations. However, if the underlying shape representation is level setsbased the inflation takes the form
of adding a constant to the embedding function in order to expand the zero-level set.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles adding and removing
nodes, as well as reading and writing the meshes to file. Consider two different hypothetical derived classes:
a VectorGeometry class and a TubularGeometry class. The VectorGeometryclass would be implemented
entirely with vector geometry, while the TubularGeometry class would also derived from an ITK spatialob-
jects class. Both classes would provide the same public interface in terms of getting nodes, setting nodes,
writing to file, reading from file, etc. However, they each would allow the user to take advantage of their
inherit properties. So the user can write a custom sensory class, that uses the additional functionality of the

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_physics.html
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TubularGeometry class without having to modify any internal code of the organism itself. In essence, the
user can be dependent on the implementation when they want to be, and remaintotaly independent in other
situations by sticking to theGeometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segmentation and analysis that offers
both great flexibility and rigid design enforcement, thereby, ensuring maximum reusability, portability and
sustainability. Our framework makes use of many powerful features in ITKincluding filters, meshes, file IO,
smart pointers, and spatial objects. We have also created a robust spring-mass physically-based deformation
layer, which can be seen as a contribution in itself.

Furthermore, the added ability to convert BYU surfaces or binary volumesinto
itk::MeshSpatialObjects and consequently, into deformable organisms should prove a useful
tool allowing level-set refinement, or physics-based interaction with segmentation results of various
existing projects. For example, both explicit physically based (spring mass)and implicit level set based
classical deformable models are special cases of DOs and their implementationis a special case of the
IDO framework. They now simply emerge in IDO by setting the proper geometrical and physical layers
(spring mass vs level set) and having behavioral and cognitive layers that simply simulate the deformation
dynamics without any top down control or scheduling.

4 Acknowledgements

We would like to thank Andy Rova for his development of the PhysLevelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application (sectionC), and Aaron Ward for his technical
expertise and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building the provided viewer (sectionC), has
additional requirements:

• VTK 5.0.0 http://www.vtk.org

• SOViewer (Feb 8, 2006)http://www.vtk.org/Wiki/SOViewer

• KWWidgets (Feb 8, 2006)http://www.kwwidgets.org/Wiki/KWWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in section2 are available, with details provided in the
frameworks online documentation.

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObjects.html
http://www.vtk.org
http://www.vtk.org/Wiki/SOViewer
http://www.kwwidgets.org/Wiki/KWWidgets
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• Geom MeshSpatialObject<dType,nDims, MType, VType>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh _spatial_object.html

• Phys Euler<DataType,TGradientImage,nDims,MType,VType>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_phys___eule r.html

• Phys LevelSet<DataType,InputImageType,nDims,MType,VType>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_phys___leve l_set.html

• Beh TranslateAll<Type,nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_beh___trans late_all.html

• Beh UniformScale<Type,nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_beh___unifo rm_scale.html

• Beh SearchForObject<Type,TInputImage,nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_beh___searc h_for_object.html

• Def TranslateAll<Type,nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_def___trans late_all.html

• Def UniformScale<Type,nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_def___unifo rm_scale.html

• Ctrl ScheduleDriven<class Type, int nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___sche dule_driven.html

• SenseGradient<DataType,TInputImage, TGradientImage, nDims>

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_sense___gra dient.html

B.2 Deformable Organism Examples

There are numerous example DOs included with the framework.

• itkOrganism<ImageType, ImageType, GradientImageType, dType, nDims> A de-
rived organism based on a itk::ImageToImageFilter that contains no default layers.
http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classitk_1_1_itk_organism .html

• Org LevelSetSchedule<ImageType, ImageType, GradientImageType, dType, nDims>
A geodesic active contours [1] based DO that uses a schedule driven cognitive layer.
http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classitk_1_1_org___level_ set_schedule.html

• Org EulerSchedule<ImageType, ImageType, GradientImageType, dType, nDims>
A 3D spring-mass [7] based DO that uses a schedule driven cognitive layer.
http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classitk_1_1_org___euler_ schedule.html

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___euler.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classitk_1_1_itk_organism.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classitk_1_1_org___level_set_schedule.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classitk_1_1_org___euler_schedule.html
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C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO framework, that allows its users to vi-
sualize the geometry of created DOs as well as observe their deformations inreal time. It gives the
user the ability to load DOs as dll files, while allowing the developer to define customized interfaces
via the DefOrgAdapter class. The GUI is based on, and therefore requires, KWWidegets, VTK, and
SOViewer. Future versions will facilitate interaction with DOs through mouse click driven forces, and
possibly other forms of input. Complete documentation of the viewer will be made available at a
later date, but many details reside in its doxygen. A binary of the viewer is available for Windows at
http://hdl.handle.net/1926/228 /viewerApplication.zip.

http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/classmial_1_1_def_org_vie wer_adapter_base.html

D Guide to users

This section provides information to those who wish to use, or contribute to the framework.

Hello I-DO

In this section we present a simple “Hello [I-DO] World” example that provides a step by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (seewww.itk.org ).

2. Download (http://hdl.handle.net/1926/228 /IDO.zip) and configure the I-DO framework using
CMake (www.cmake.org ) and the CMakeLists.txt file found in the root-most directory. Make sure to
leave ”Build Examples” set to ”ON”.

3. Compile the created project. This will build the I-DO library, and two executables.

4. Run YourBuildDirectory/examples/basic/defOrgbasic from command line, providing input and out-
put image names, a schedule name, and a mesh name. (e.g. cube.mhd out.mhd eulerSchedule3d.txt
cubeMesh3d.meta )

5. The DO will run, and output a final binary image using the file name provided.

Users can follow these procedures for any of the provided examples in the examples directory.

• Basic - The same example as shown in “Building A Deformable Organism”. A spring-mass DO using
a schedule driven cognitive layer along with a few example behaviors anddeformations (Figure3
top).

• Advanced - A multi-organism application that uses two pre-made DOs in sequence.
Org EulerSchedule begins the segmentation process and initializesOrg LevelSetSchedule with
its output, which then proceeds to refine the segmentation results before writing out to file (Figure3
bottom).

http://hdl.handle.net/1926/228
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html
www.itk.org
http://hdl.handle.net/1926/228
www.cmake.org
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Figure 3: Two example DOs progressing from left to right. Top: The basic example initialized with a cube, performing

a Beh UniformScale , and coming to rest. Bottom: The advanced example initialized with a cube, smoothing under

Phys LevelSet after a Beh UniformScale under Phys Euler , and coming to rest via image forces. The complete

videos are available at http://hdl.handle.net/1926/228 /{basic,advanced}.wmv

Building A Deformable Organism

This example walks the reader through creating a DO by individually instantiating and attaching the layers.
This is in contrast to using an already created DO, which can be instantiated,setup, and used just like any
ITK filter.

The first step is to choose and instantiate a DO shell (one having no built in layers) using the standard ITK
itk::SmartPointer approach. In this case the DO is an ITKitk::ImageToImageFilter , and must be
provided with an input image via theSetInput method.

typedef itk::ItkOrganism <ImageType, ImageType, Gradien tImageType, float, 3> organismType;
organismType::Pointer testOrg = organismType::New();
std::cout << "Organism created..." << std::endl;
testOrg->SetInput(reader->GetOutput());

Now we can begin instantiating and attaching implementations of the layers/components the DO needs
to function. For simplicity, all derived classes of a particular layer are prefixed with an abbreviation of
that layer (Org for Organism, Ctrl for Control, Beh for Behavior, Sense for Sensor, Phys for Physics, Def
for Deformation, and Geom for Geometrical). Next we will instantiate a sensor to calculate the gradient
information used as an external force during the deformation simulations by the Physics layer.

typedef Sense_Gradient<float,ImageType,GradientImage Type,3> gradientSensorType;
gradientSensorType::Pointer gradientSensor = gradientS ensorType::New();

The sensor requires its publicly definedsensorIn as input. Here we create a pointer to the class, and set its
values. This allows all sensors to be ran from a commonrun method, with their own customized input.

gradientSensorType::sensorIn::Pointer input = gradient SensorType::sensorIn::New();
input->sigma = 1.0;
reader->Update();
input->imageIn = reader->GetOutput();

http://hdl.handle.net/1926/228
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
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The gradient sensor can then be ran. Note that at this timeSensors themselves do not fit into the ITK
pipeline, and thus the reader’sUpdate() method must be called prior to running the sensor.

gradientSensor->run(input);

Finally, its output can be obtained by constructing asensorOut itk::SmartPointer and providing the
appropriate downcast on the pointer returned by thegetOutput method.

gradientSensorType::sensorOut::Pointer output = (gradi entSensorType::sensorOut *) (gradientSensor->getOutpu t()).GetPointer();

Next create thePhysics andGeometrical layers. Notice that the type of external force image is provided
as an input type to thePhysics layer.

typedef Phys_Euler<float,GradientImageType,3> PhysLay erType;
typedef Geom_MeshSpatialObject<float,3> GeometricType ;

PhysLayerType::Pointer physLayer = PhysLayerType::New( );
GeometricType::Pointer geomLayer = GeometricType::New( );

Then set thePhysics layer to use the external force image calculated by the gradient sensor and the
newly constructedGeometrical layer, and setup the topology of theGeometric layer (in this case an
ITK itk::MeshSpatialObject ). Finally, attach both to theOrganism .

physLayer->setExternalForces((void *) &(output->image Out));
physLayer->setGeometry(geomLayer);
std::cout << "External forces set." << std::endl;

geomLayer->readTopologyFromFile(topologyInputFileNa me);
std::cout << "Topology read from ’" << topologyInputFileNa me << "’..." << std::endl;

testOrg->setPhysicsLayer(physLayer);
testOrg->setGeometricLayer(geomLayer);
std::cout << "Physics and Geometric layers added..." << std ::endl;

Create aCogntive layer, set its appropriate options, and attach it to the DO. In this case it only requires a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgL = Ctrl_Sched uleDriven<float, 3>::New();
cgL->setSchedule(scheduleFileName);
testOrg->setCognitiveLayer(cgL);

Now begin creating and attaching simple behaviors, and deformations. Note inthis case, the behaviors and
deformations do not require any additional parameters or settings.

Beh_TranslateAll<float, 3>::Pointer beh1 = Beh_Translat eAll<float,3>::New();
Beh_UniformScale<float, 3>::Pointer beh2 = Beh_UniformS cale<float,3>::New();
Def_Translation<float, 3>::Pointer def1 = Def_Translati on<float,3>::New();
Def_UniformScale<float, 3>::Pointer def2 = Def_UniformS cale<float,3>::New();

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
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testOrg->addBehaviour(beh1);
testOrg->addBehaviour(beh2);
testOrg->addDeformation(def1);
testOrg->addDeformation(def2);

Attach a more advanced behavior and set its additional parameters. In this case it needs an image and a
Geometric pointer for its internalSense AvgIntensity sensor.

Beh_SearchForObject<float,ImageType,3>::Pointer beh3 = Beh_SearchForObject<float,ImageType,3>::New();
beh3->image = reader->GetOutput();
beh3->geomLayer = geomLayer;
testOrg->addBehaviour(beh3);

The Organism is ready to run. CallingUpdate() on the writer will cause the DO to simulate for a set
amount of DO time. Here we set the DO torun for 25 iterations with a singleUpdate() .

testOrg->setRunTime(120);
writer->SetInput(testOrg->GetOutput());
try
{

writer->Update();
}
catch(itk::ExceptionObject & err)
{

std::cout << "ExceptionObject caught!" << std::endl;
std::cout << err << std::endl;
return -1;

}

Finally, in addition to the binary output available on the writer the DO’s mesh can be written back to file.

testOrg->writeNodesToFile(nodeOutputFileName);
std::cout << "Nodes written to ’" << nodeOutputFileName << " ’." << std::endl;

Extending Existing DOs

Extending existing organisms is as easy as following theBuilding A Deformable Organismexample and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in this document in a later revision.
In the mean time, interested users are referred to the doxygen documentationwhich outlines how each pure
virtual function of the ABCs should be defined in a derived class. We will also provide skeleton code
generators, that will give those wishing to create new layers a “fill in the blanks” option.

http://hdl.handle.net/1926/228 /doxygenManual.pdf
or
http://www.sfu.ca/ ˜ cmcintos/IDO/doxygen/html/index.html

http://hdl.handle.net/1926/228
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/index.html
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